Cannabinoids also regulate appetite and food intake via dopamine
(Endo)cannabinoids have a major influence on appetite and food intake.
Appetite and food intake are also controlled by dopamine with regard to the reward and motivation aspect. Food intake is controlled in particular
- from the brain regions:1
- via the messenger substances4
- Neuropeptide Y7
- increases appetite and food intake via Orexine
- controls fat balance
- controls motility of the gastrointestinal tract
- controls circadian rhythm
- controls stress and anxiety response
- regulates vascular resistance
- controls sexual function
- Insulin8
- regulates glucose uptake in body cells
- reduces blood sugar
- Increase in blood sugar (high), fatty acids (low) and amino acids (low) increases insulin release
- accelerates glucose uptake in muscle and fat cells
- accelerates the absorption of amino acids and potassium in muscle and fat cells
- accelerates the uptake of triglycerides in muscle and fat cells
- increases glycogen synthesis and storage in liver and muscle
- increases triglyceride synthesis in liver and fatty tissue
- promotes storage of amino acids in the muscle
- inhibits hepatic gluconeogenesis
- inhibits proteolysis
- inhibits glycogenolysis
- inhibits lipolysis
- Insulin mediates endocannabinoid–mediated LTD in dopamine neurons in the VTA9
- Insulin suppresses glutamatergic input
- The reduced arousal drive reduces the interest in food
- Leptin10
- has an appetite suppressant effect and increases the feeling of satiety
- only in normal-weight people, not in obese people (where leptin resistance is common)
- In the case of abnormal leptin levels (e.g. in obesity)11
- increases 2-AG synthesis in the lateral hypothalamus by binding to CB1R
- Endocannabinoids inhibit orexin-A
- this eliminates the inhibitory signaling effect of orexin-A
- increased orexin A release
- Consequences are hyperphagia
- Leptingabe normalized these Consequences
- In the case of abnormal leptin levels (e.g. in obesity)11
- reduces synthesis of appetite-increasing (orexigenic) substances
- reduces neuropeptide Y synthesis and release in the hypothalamus.
- only in normal-weight people, not in obese people (where leptin resistance is common)
- Leptin controls food intake via Endocannabinoids2
- Leptin reduces AEA12
- Leptin can cross the blood-brain barrier
- Leptin blood level represents tissue fat percentage
- has an appetite suppressant effect and increases the feeling of satiety
- Α-melanocyte-stimulating hormone (α-MSH)13
- α-MSH is an appetite-inhibiting (anorexigenic) regulatory hormone in the melanocortin system
- (only) In a saturated state after food intake:
- Leptin and insulin can cross the blood-brain barrier
- then activate POMC neurons in the arcuate nucleus
- these produce α-MSH
- α-MSH binds to MC-4 in the paraventricular nucleus
- the latter reduces appetite and increases energy consumption
- to unsaturated state (fasting period)
- Ghrelin inhibits POMC neurons (and increases the feeling of hunger)
- reduced leptin levels inhibit POMC neurons
- Agouti-like peptide (AgRP) is synthesized
- Neuropeptide Y is synthesized
- (only) In a saturated state after food intake:
- α-MSH is an appetite-inhibiting (anorexigenic) regulatory hormone in the melanocortin system
- Cholecystokinin14
- conveys a feeling of satiety
- inhibits gastric emptying
- Melanin-concentrating hormone15
- Release during sleep in the hypothalamus
- increases appetite (important regulator)
- Excess causes weight gain
- Deficiency causes anorexia
- Orexine16
- increase the desire to eat
- increase the amount of food consumed
- suppress the feeling of satiety
- Orexin A suppresses satiety 100 times more strongly than orexin B
- Release during the waking state in the hypothalamus
- Activate ghrelin Orexine
- Leptin inhibits orexins
- Neuropeptide Y7
In addition to the neuronal circuits of the hypothalamus, these messenger substances also control brain regions that are involved in reward, motivation, learning, emotions and stress and probably modulate food intake: NAcc, ventral striatum, VTA, PFC, amygdala and hippocampus.3
The question arises as to whether endocannabinoids could be a key to understanding the appetite-suppressing effects of ADHD medications.
The CB1R (cannabinoid 1 receptor) regulates appetite.171819
The CB1R agonists THC, anandamide and 2-AG promote appetite and cravings20 also in animals121 22 via
CB1R binding in the hypothalamus and limbic forebrain.12
- Endocannabinoids modulate appetite and energy expenditure via CB1R. AEA has different effects on feeding behavior depending on the state of satiety and the CB1R location (peripheral or central):23
- Peripheral: The AEA reuptake inhibitor AM404 reduced food intake in partially satiated animals, not in unsatiated animals
- Central: AM404 induced unrestrained eating (hyperphagia) in unsatiated animals. The inverse CBR agonist SR141716A suppressed this.
CB1R antagonists have an appetite-inhibiting effect.24
The only CB1R antagonist that had received approval (rimonabant)25 was withdrawn from the market due to rare but serious side effects.
- Rimonabant inhibited the effect of appetite stimulants (cocaine, morphine and food) and reduced interest in sucrose, beer and alcohol26
The CB1R regulates the baby’s milk intake
- CB1R antagonists prevent the milk intake of infants on the first to fourth day and lead to death.27
- CB1R-KO mice do not take milk on the first day of life27
Active ingredients against obesity
Research is being conducted into active ingredients to combat obesity:28
- centrally acting active ingredients
- Melanocortin analogs (setmelanotide)
- Neuropeptide Y receptor Y5 antagonists (velneperite)
- Zonisamide-bupropion (Empatic)
- CB1R antagonists (rimonabant)
- Intestinal hormones and incretin targets
- nGlucagon-like-peptide-1 (GLP-1) agonists
- Semaglutide (brand names: Ozempic, Wegovy) is FDA-approved for chronic weight management in patients with a BMI of 27 or greater and at least one weight-related condition (e.g., hypertension, type 2 diabetes, cholesterol) or in patients with a BMI of 30 or greater. A pathway of action of semaglutide via the endocannabinoid system is not known. The CB1R inverse agonist CRB-913 significantly increased the weight-reducing effect of semaglutide.29(Semaglutid)
- Amylin mimetics (davalintide, dual amylin and calcitonin receptor agonists)
- GLP-1/glucagon receptor agonists with dual action (oxyntomodulin)
- Triple agonists (Tri-Agonist 1706)
- Peptide YY, leptin analogs (combination pramlintide-metreleptin)
- nGlucagon-like-peptide-1 (GLP-1) agonists
- other novel target molecules
- Methionine aminopeptidase 2 inhibitor (beloranib)
- Lipase inhibitor (cetilistat)
- triple monoamine reuptake inhibitors (tesofensine)
- Fibroblast growth factor 21)
- Vaccines against obesity
- Ghrelin
- Somatostatin
- Adenovirus36.
The following presentation in this section is based on the review by Sagheddu et al (2015).30
Endocannabinoids also regulate food intake and perception of palatability via limbic forebrain areas such as the nucleus accumbens, which regulate the evaluation of sensory pleasure. The nucleus accumbens, a crucial structure of the brain’s reward system, is also a fundamental center for the non-homeostatic control of eating.30
Endocannabinoids have a dose-dependent effect via CB1R in the hypothalamus and limbic forebrain to stimulate appetite (orexigen) and increase food intake.30 In contrast, several studies report an effect on appetite and food intake by AEA, 2-AG and CB1R antagonists exclusively with peripheral administration and not with central administration.3132
- Increased 2-AG in the nucleus accumbens increases food intake via CB1R3334
- Increased AEA in the nucleus accumbens enhances the natural liking of rats to sweet substances35
- AEA promotes food intake via CB1R in the brain at low doses and reduces it at high doses3637382
- Food deprivation
- Resumption of food intake
- The “satiety hormone” leptin lowers the AEA level2
- ADHD medications (stimulants) reduce AEA and 2-AG. More on this at MPH reduces anandamide and 2-AG in the article Cannabinoids for ADHD and stress. Stimulants have a significant appetite-suppressing effect.
- Leptin deficiency (as occurs in obesity) increases 2-AG synthesis in the lateral hypothalamus. Consequences are:11
- CB1R-mediated reduction of inhibitory orexin-A signaling
- increased orexin A release
- Hyperphagia (binge eating)
- Leptingabe normalized these Consequences
CB1R agonists
- can trigger further food intake in fully eaten animals30
- strengthen, even at low doses, the corticostriatal-hypothalamic signaling pathway (including the nucleus accumbens), which is highly important for the motivational drive to eat39
Within this circuit, dopamine is the key to both the rewarding and addictive properties of food.30
The CB1R antagonist rimonabant - prevents the increase in dopamine levels in the nucleus accumbens that would otherwise be triggered by the presentation of novel tasty foods40
- inhibits the release of dopamine in the mPFC, which occurs during food anticipation and eating in hungry rats41
CB1R antagonists
possibly only peripheral, not when administered to the brain32
- reduce food intake motivation in rats in a dose-dependent manner.142
- reduce appetite and consumption of rewarding (sweet) foods/drinks4344 45 46
- suppress food intake, conditioned place preference for food, preference for sucrose and the reinforcing properties of chocolate1
- reduce reactions to pleasant stimuli (e.g. tasty food) in important reward areas of the brain (e.g. VStr and OFC) and trigger anhedonia and anxiety when taken chronically47
- CB1R-KO mice show a hypophagic phenotype (reduced interest in sucrose as a reward, lower motivation to obtain food, lower body fat percentage, increased leptin sensitivity)484950
MPH has a different effect on CB1R depending on the dose.51
Δ9-THC acid A (Δ9-THCA-A) is a carboxylated, non-narcotic native prodrug of Δ9-THC. Δ9-THCA-A acts as a partial and selective PPARγ modulator. Δ9-THCA-A showed in a mouse model of HFD-induced obesity:52
- significantly reduced fat mass
- significantly reduced body weight gain
- significantly improved glucose intolerance
- significantly improved insulin resistance
- largely prevented hepatic steatosis, adipogenesis and macrophage infiltration in adipose tissue
- strong anti-inflammatory effect
Fattore L, Melis M, Fadda P, Pistis M, Fratta W (2010): The endocannabinoid system and nondrug rewarding behaviours. Exp Neurol. 2010 Jul;224(1):23-36. doi: 10.1016/j.expneurol.2010.03.020. PMID: 20353776. REVIEW ↥ ↥ ↥ ↥
Di Marzo V, Goparaju SK, Wang L, Liu J, Bátkai S, Járai Z, Fezza F, Miura GI, Palmiter RD, Sugiura T, Kunos G (2001): Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature. 2001 Apr 12;410(6830):822-5. doi: 10.1038/35071088. PMID: 11298451. ↥ ↥ ↥ ↥
Horvath TL, Diano S (2004): The floating blueprint of hypothalamic feeding circuits. Nat Rev Neurosci. 2004 Aug;5(8):662-7. doi: 10.1038/nrn1479. PMID: 15263896. REVIEW ↥ ↥
Williams G, Bing C, Cai XJ, Harrold JA, King PJ, Liu XH (2001): The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiol Behav. 2001 Nov-Dec;74(4-5):683-701. doi: 10.1016/s0031-9384(01)00612-6. PMID: 11790431. REVIEW ↥ ↥
Smith KS, Berridge KC (2005): The ventral pallidum and hedonic reward: neurochemical maps of sucrose “liking” and food intake. J Neurosci. 2005 Sep 21;25(38):8637-49. doi: 10.1523/JNEUROSCI.1902-05.2005. Erratum in: J Neurosci. 2005 Oct 12;25(41):9554. PMID: 16177031; PMCID: PMC6725525. ↥
Tindell AJ, Berridge KC, Aldridge JW (2004): Ventral pallidal representation of pavlovian cues and reward: population and rate codes. J Neurosci. 2004 Feb 4;24(5):1058-69. doi: 10.1523/JNEUROSCI.1437-03.2004. PMID: 14762124; PMCID: PMC6793590. ↥
DocCheck Flexikon: Insulin german ↥
Labouèbe G, Liu S, Dias C, Zou H, Wong JC, Karunakaran S, Clee SM, Phillips AG, Boutrel B, Borgland SL (2013): Insulin induces long-term depression of ventral tegmental area dopamine neurons via endocannabinoids. Nat Neurosci. 2013 Mar;16(3):300-8. doi: 10.1038/nn.3321. PMID: 23354329; PMCID: PMC4072656. ↥
DocCheck Flexikon: Leptin german ↥
Cristino L, Busetto G, Imperatore R, Ferrandino I, Palomba L, Silvestri C, Petrosino S, Orlando P, Bentivoglio M, Mackie K, Di Marzo V (2013): Obesity-driven synaptic remodeling affects endocannabinoid control of orexinergic neurons. Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):E2229-38. doi: 10.1073/pnas.1219485110. PMID: 23630288; PMCID: PMC3683753. ↥ ↥
Laksmidewi AAAP, Soejitno A (2021): Endocannabinoid and dopaminergic system: the pas de deux underlying human motivation and behaviors. J Neural Transm (Vienna). 2021 May;128(5):615-630. doi: 10.1007/s00702-021-02326-y. PMID: 33712975; PMCID: PMC8105194. REVIEW ↥ ↥
DocCheck Flexikon: α-Melanozyten-stimulierendes Hormon german ↥
DocCheck Flexikon: Orexin german ↥
Roque-Bravo R, Silva RS, Malheiro RF, Carmo H, Carvalho F, da Silva DD, Silva JP (2023): Synthetic Cannabinoids: A Pharmacological and Toxicological Overview. Annu Rev Pharmacol Toxicol. 2023 Jan 20;63:187-209. doi: 10.1146/annurev-pharmtox-031122-113758. PMID: 35914767. REVIEW ↥
Razmovski-Naumovski V, Luckett T, Amgarth-Duff I, Agar MR (2022): Efficacy of medicinal cannabis for appetite-related symptoms in people with cancer: A systematic review. Palliat Med. 2022 Jun;36(6):912-927. doi: 10.1177/02692163221083437. PMID: 35360989. METASTUDY ↥
Riggs PK, Vaida F, Rossi SS, Sorkin LS, Gouaux B, Grant I, Ellis RJ (2012): A pilot study of the effects of cannabis on appetite hormones in HIV-infected adult men. Brain Res. 2012 Jan 11;1431:46-52. doi: 10.1016/j.brainres.2011.11.001. PMID: 22133305; PMCID: PMC6200580. ↥
Kirkham TC, Williams CM (2001): Endogenous cannabinoids and appetite. Nutr Res Rev. 2001 Jun;14(1):65-86. doi: 10.1079/NRR200118. PMID: 19087417. ↥
Jager G, Witkamp RF (2014): The endocannabinoid system and appetite: relevance for food reward. Nutr Res Rev. 2014 Jun;27(1):172-85. doi: 10.1017/S0954422414000080. PMID: 24933167. REVIEW ↥
Scherma M, Fattore L, Castelli MP, Fratta W, Fadda P (2014): The role of the endocannabinoid system in eating disorders: neurochemical and behavioural preclinical evidence. Curr Pharm Des. 2014;20(13):2089-99. doi: 10.2174/13816128113199990429. PMID: 23829365. REVIEW ↥
Reyes-Cabello C, Alen F, Gómez R, Serrano A, Rivera P, Orio L, Rodríguez de Fonseca F, Pavón FJ (2012): Effects of the anandamide uptake blocker AM404 on food intake depend on feeding status and route of administration. Pharmacol Biochem Behav. 2012 Mar;101(1):1-7. doi: 10.1016/j.pbb.2011.11.011. PMID: 22133635. ↥
Di Marzo V, Després JP (2009): CB1 antagonists for obesity–what lessons have we learned from rimonabant? Nat Rev Endocrinol. 2009 Nov;5(11):633-8. doi: 10.1038/nrendo.2009.197. PMID: 19844251. ↥
Tonstad S (2006): Rimonabant: a cannabinoid receptor blocker for the treatment of metabolic and cardiovascular risk factors. Nutr Metab Cardiovasc Dis. 2006 Mar;16(2):156-62. doi: 10.1016/j.numecd.2005.10.011. PMID: 16487916. REVIEW ↥
Onaivi ES (2009): Cannabinoid receptors in brain: pharmacogenetics, neuropharmacology, neurotoxicology, and potential therapeutic applications. Int Rev Neurobiol. 2009;88:335-69. doi: 10.1016/S0074-7742(09)88012-4. PMID: 19897083. REVIEW ↥
Fride E, Foox A, Rosenberg E, Faigenboim M, Cohen V, Barda L, Blau H, Mechoulam R (2003): Milk intake and survival in newborn cannabinoid CB1 receptor knockout mice: evidence for a “CB3” receptor. Eur J Pharmacol. 2003 Feb 7;461(1):27-34. doi: 10.1016/s0014-2999(03)01295-0. PMID: 12568912. ↥ ↥
Srivastava G, Apovian C (2018): Future Pharmacotherapy for Obesity: New Anti-obesity Drugs on the Horizon. Curr Obes Rep. 2018 Jun;7(2):147-161. doi: 10.1007/s13679-018-0300-4. PMID: 29504049. REVIEW ↥
Morningstar M, Kolodziej A, Ferreira S, Blumen T, Brake R, Cohen Y (2023): Novel cannabinoid receptor 1 inverse agonist CRB-913 enhances efficacy of tirzepatide, semaglutide, and liraglutidein the diet-induced obesity mouse model. Obesity (Silver Spring). 2023 Nov;31(11):2676-2688. doi: 10.1002/oby.23902. PMID: 37840407. ↥
Sagheddu C, Muntoni AL, Pistis M, Melis M (2015): Endocannabinoid Signaling in Motivation, Reward, and Addiction: Influences on Mesocorticolimbic Dopamine Function. Int Rev Neurobiol. 2015;125:257-302. doi: 10.1016/bs.irn.2015.10.004. PMID: 26638769. REVIEW ↥ ↥ ↥ ↥ ↥
Gómez R, Navarro M, Ferrer B, Trigo JM, Bilbao A, Del Arco I, Cippitelli A, Nava F, Piomelli D, Rodríguez de Fonseca F (2002): A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J Neurosci. 2002 Nov 1;22(21):9612-7. doi: 10.1523/JNEUROSCI.22-21-09612.2002. PMID: 12417686; PMCID: PMC6758016. ↥ ↥ ↥
Sink KS, Segovia KN, Nunes EJ, Collins LE, Vemuri VK, Thakur G, Makriyannis A, Salamone JD (2009): Intracerebroventricular administration of cannabinoid CB1 receptor antagonists AM251 and AM4113 fails to alter food-reinforced behavior in rats. Psychopharmacology (Berl). 2009 Oct;206(2):223-32. doi: 10.1007/s00213-009-1602-8. PMID: 19588124; PMCID: PMC4425366. ↥ ↥
Kirkham TC, Williams CM, Fezza F, Di Marzo V (2002): Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol. 2002 Jun;136(4):550-7. doi: 10.1038/sj.bjp.0704767. PMID: 12055133; PMCID: PMC1573386. ↥ ↥ ↥ ↥
Soria-Gómez E, Matias I, Rueda-Orozco PE, Cisneros M, Petrosino S, Navarro L, Di Marzo V, Prospéro-García O (2007): Pharmacological enhancement of the endocannabinoid system in the nucleus accumbens shell stimulates food intake and increases c-Fos expression in the hypothalamus. Br J Pharmacol. 2007 Aug;151(7):1109-16. doi: 10.1038/sj.bjp.0707313. PMID: 17549045; PMCID: PMC2042935. ↥
Mahler SV, Smith KS, Berridge KC (2007): Endocannabinoid hedonic hotspot for sensory pleasure: anandamide in nucleus accumbens shell enhances ‘liking’ of a sweet reward. Neuropsychopharmacology. 2007 Nov;32(11):2267-78. doi: 10.1038/sj.npp.1301376. PMID: 17406653. ↥
Jamshidi N, Taylor DA (2001): Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br J Pharmacol. 2001 Nov;134(6):1151-4. doi: 10.1038/sj.bjp.0704379. PMID: 11704633; PMCID: PMC1573067. ↥
Williams CM, Kirkham TC (1999): Anandamide induces overeating: mediation by central cannabinoid (CB1) receptors. Psychopharmacology (Berl). 1999 Apr;143(3):315-7. doi: 10.1007/s002130050953. PMID: 10353436. ↥
Higgs S, Williams CM, Kirkham TC (2003): Cannabinoid influences on palatability: microstructural analysis of sucrose drinking after delta(9)-tetrahydrocannabinol, anandamide, 2-arachidonoyl glycerol and SR141716. Psychopharmacology (Berl). 2003 Feb;165(4):370-7. doi: 10.1007/s00213-002-1263-3. PMID: 12447606. ↥
Dodd GT, Stark JA, McKie S, Williams SR, Luckman SM (2009): Central cannabinoid signaling mediating food intake: a pharmacological-challenge magnetic resonance imaging and functional histology study in rat. Neuroscience. 2009 Nov 10;163(4):1192-200. doi: 10.1016/j.neuroscience.2009.07.022. PMID: 19607884. ↥
Melis T, Succu S, Sanna F, Boi A, Argiolas A, Melis MR (2007): The cannabinoid antagonist SR 141716A (Rimonabant) reduces the increase of extra-cellular dopamine release in the rat nucleus accumbens induced by a novel high palatable food. Neurosci Lett. 2007 Jun 4;419(3):231-5. doi: 10.1016/j.neulet.2007.04.012. PMID: 17462824. ↥
Dazzi L, Talani G, Biggio F, Utzeri C, Lallai V, Licheri V, Lutzu S, Mostallino MC, Secci PP, Biggio G, Sanna E (2014): Involvement of the cannabinoid CB1 receptor in modulation of dopamine output in the prefrontal cortex associated with food restriction in rats. PLoS One. 2014 Mar 14;9(3):e92224. doi: 10.1371/journal.pone.0092224. PMID: 24632810; PMCID: PMC3954872. ↥
Solinas M, Goldberg SR (2005): Motivational effects of cannabinoids and opioids on food reinforcement depend on simultaneous activation of cannabinoid and opioid systems. Neuropsychopharmacology. 2005 Nov;30(11):2035-45. doi: 10.1038/sj.npp.1300720. PMID: 15812567. ↥
Salamone JD, McLaughlin PJ, Sink K, Makriyannis A, Parker LA (2007): Cannabinoid CB1 receptor inverse agonists and neutral antagonists: effects on food intake, food-reinforced behavior and food aversions. Physiol Behav. 2007 Jul 24;91(4):383-8. doi: 10.1016/j.physbeh.2007.04.013. PMID: 17521686; PMCID: PMC2806672. REVIEW ↥
Sink KS, McLaughlin PJ, Wood JA, Brown C, Fan P, Vemuri VK, Peng Y, Olszewska T, Thakur GA, Makriyannis A, Parker LA, Salamone JD (2008): The novel cannabinoid CB1 receptor neutral antagonist AM4113 suppresses food intake and food-reinforced behavior but does not induce signs of nausea in rats. Neuropsychopharmacology. 2008 Mar;33(4):946-55. doi: 10.1038/sj.npp.1301476. PMID: 17581535; PMCID: PMC3711240. ↥
Maccioni P, Pes D, Carai MA, Gessa GL, Colombo G (2008): Suppression by the cannabinoid CB1 receptor antagonist, rimonabant, of the reinforcing and motivational properties of a chocolate-flavoured beverage in rats. Behav Pharmacol. 2008 May;19(3):197-209. doi: 10.1097/FBP.0b013e3282fe8888. PMID: 18469537. ↥
Thornton-Jones ZD, Vickers SP, Clifton PG (2005): The cannabinoid CB1 receptor antagonist SR141716A reduces appetitive and consummatory responses for food. Psychopharmacology (Berl). 2005 May;179(2):452-60. doi: 10.1007/s00213-004-2047-8. PMID: 15821957. ↥
Horder J, Harmer CJ, Cowen PJ, McCabe C (2010): Reduced neural response to reward following 7 days treatment with the cannabinoid CB1 antagonist rimonabant in healthy volunteers. Int J Neuropsychopharmacol. 2010 Sep;13(8):1103-13. doi: 10.1017/S1461145710000453. PMID: 20426883. ↥
Cota D, Marsicano G, Tschöp M, Grübler Y, Flachskamm C, Schubert M, Auer D, Yassouridis A, Thöne-Reineke C, Ortmann S, Tomassoni F, Cervino C, Nisoli E, Linthorst AC, Pasquali R, Lutz B, Stalla GK, Pagotto U (2003): The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest. 2003 Aug;112(3):423-31. doi: 10.1172/JCI17725. PMID: 12897210; PMCID: PMC166293. ↥
Ravinet Trillou C, Delgorge C, Menet C, Arnone M, Soubrié P (2004): CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity. Int J Obes Relat Metab Disord. 2004 Apr;28(4):640-8. doi: 10.1038/sj.ijo.0802583. PMID: 14770190. ↥
Pang Z, Wu NN, Zhao W, Chain DC, Schaffer E, Zhang X, Yamdagni P, Palejwala VA, Fan C, Favara SG, Dressler HM, Economides KD, Weinstock D, Cavallo JS, Naimi S, Galzin AM, Guillot E, Pruniaux MP, Tocci MJ, Polites HG (2011): The central cannabinoid CB1 receptor is required for diet-induced obesity and rimonabant’s antiobesity effects in mice. Obesity (Silver Spring). 2011 Oct;19(10):1923-34. doi: 10.1038/oby.2011.250. PMID: 21799481. ↥
Connor C, Hamilton J, Robison L, Hadjiargyrou M, Komatsu D, Thanos P (2022): Abstinence from Chronic Methylphenidate Exposure Modifies Cannabinoid Receptor 1 Levels in the Brain in a Dose-dependent Manner. Curr Pharm Des. 2022;28(4):331-338. doi: 10.2174/1381612827666210127120411. PMID: 33504296. ↥
Palomares B, Ruiz-Pino F, Garrido-Rodriguez M, Eugenia Prados M, Sánchez-Garrido MA, Velasco I, Vazquez MJ, Nadal X, Ferreiro-Vera C, Morrugares R, Appendino G, Calzado MA, Tena-Sempere M, Muñoz E (2020): Tetrahydrocannabinolic acid A (THCA-A) reduces adiposity and prevents metabolic disease caused by diet-induced obesity. Biochem Pharmacol. 2020 Jan;171:113693. doi: 10.1016/j.bcp.2019.113693. PMID: 31706843. ↥