Header Image
Other receptors to which cannabinoids bind

Sitemap

Other receptors to which cannabinoids bind

Cannabinoids bind not only to the classic cannabinoid receptors (see above), but also to other receptors.

1. TRPV1

Some cannabinoids also bind to TRPV1 (transient receptor potential cation channel subfamily V member 1, transient receptor potential cation channel of subfamily V (for vanilloid), subtype 1, obsolete vanilloid receptor 1 (VR1) or capsaicin receptor). TRPV1 was first described in 1997.1
TRPV1 is primarily a peripheral pain receptor. It reacts to various environmental factors and agonists, which is why all these stimuli feel comparable (burning sharpness as well as burning from heat or burning from acid).
TRPV1 is a polymodal ion channel. TRPV1 is activated by various physical or chemical stimuli:2

  • Flavor sharpness
  • Temperatures from 42 degrees
  • pH value below 5.9
  • Tension
  • mechanical force
  • Agonists
    • Capsaicin (paprika and chili peppers)
    • Various toxins34
      • Psalmotoxins
      • Vanillotoxins (tarantula, Psalmopoeus cambridgei)
      • DkTx
      • RhTx
      • BmP01
      • Echis coloratus Toxins
      • APHCs
      • HCRG21
      • Botulinum neurotoxin
      • Resiniferatoxin (spurge family)5
      • Scorpion venom
      • Spider toxin
      • Ciguatera fish poisoning (CFP)
      • neurotoxic shellfish poisoning (NSP)
      • Latoia consocia caterpillar venom6

In the brain, TRPV1 has no role in pain perception.
In the following, we present the effects and interactions of dopamine in particular.

TRPV1 is found on dopaminergic neurons in the VTA, especially during birth.
TRPV1 mediates various dopaminergic-influenced effects:

  • TRPV1 influenced the sensitivity to amphetamine.7
  • Striatal TRPV1 activation by paracetamol improves orofacial dyskinesia induced by D2 receptor antagonists.8
  • TRPV1 on astrocytes rescues nigral dopamine neurons in Parkinson’s disease through TRPV1-mediated endogenous production of ciliary neurotrophic factor (CNTF)9

TRPV1 is found in the brain at sites that are not necessarily activated by classic inflammatory processes due to the blood-brain barrier10, such as:11

  • Nucleus tractus solitarius
  • Area postrema
  • Locus coeruleus
  • preoptic area of the hypothalamus
  • many cortical regions
    • e.g. in pyramidal neurons12
  • limbic system
    • Hippocampus
      • especially on pyramidal neurons12
    • central amygdala
    • medial and lateral habenula
  • Substantia nigra
  • Cerebellum
  • Thalamus nuclei
  • inferior olive
  • Olfactory bulb5
  • Striatum5
    • in fibers and postsynaptic13
  • Mesencephalon5
  • periaqueductal gray5
  • Hindbrain12

TRPV1 can be found in12

  • Synapses (predominantly, but not exclusively in postsynaptic dendritic spines)
    • pre- and postsynaptic.14
  • at the end feet of astrocytes
  • in pericytes
  • in neurons

Endogenous TRPV1 agonists are:15

  • 9(10)-EpOME (9(10)-epoxy-12Z-octadecenoic acid, epoxy metabolite of linoleic acid)
  • 9, 10-DiHOME (9,10-dihydroxy-12Z-octadecenoic acid, hydroxy metabolite of linoleic acid)
  • 9-HODE (9-hydroxy-10E,12Z-octadecadienoic acid, hydroxy metabolite of linoleic acid)
  • 9-oxoODE (9-oxo-10E,12Z-octadecadienoic acid, epoxy metabolite of linoleic acid)
  • 12(13)-EpOME (12(13)-epoxy-9Z-octadecenoic acid, epoxy metabolite of linoleic acid)
  • 12(S)-HPETE (12(S)-hydroperoxyeicosatetraenoic acid)
  • 12, 13-DiHOME (12,13-dihydroxy-9Z-octadecenoic acid)
  • 12/15 -LOX (12/15-Lipoxygenase)
  • 13-HODE (13-hydroxy-9Z, 11E-octadecadienoic acid, LA derivative)
  • 13-oxoODE (13-oxo-9Z,11E-octadecadienoic acid)
  • 20-HEPE (20-hydroxyeicosapentaenoic acid, derived from EPA)
  • 20-HETE (20-hydroxyeicosatetraenoic acid, derived from AA)
  • 22-HDoHE (22-hydroxydocosahexaenoic acid, derived from DHA)
  • α-Linolenic acid (ALA)
  • Anandamide (AEA)
  • Arachidonic acid (AA)
  • Cyclooxygenase-1,-2 (COX-1,-2)
  • Cytochrome P450 (CYP450)
  • Docosahexaenoic acid (DHA)
  • Eicosapentaenoic acid (EPA)
  • Epoxyeicosatrienoic acids (EETs)
  • Hepoxilin A3 (HXA3)
  • Hepoxilin B3 (HXB3)
  • Hydroxyeicosatetraenoic acids (HETEs)
  • Leukotriene B4 (LTB4)16
  • Linoleic acid (LA)
  • Epidermal type 3 lipoxygenase (eLOX-3)
  • Lysophosphatidic acid (LPA)
  • Polyunsaturated fatty acids (PUFAs)
  • N-acylamino acids/neurotransmitters (NAANs)
  • N-acylethanolamines (NAEs)
  • N-acylphosphatidylethanolamines (NAPEs)
  • N-arachidonoyl dopamine (NADA)16
  • N-arachidonoyl-GABA (A-GABA)
  • Sodium hydrogen sulfide (NaHS)
  • N-docosahexaenoyl GABA (D-GABA)
  • N-Linoleoyl-GABA (L-GABA)
  • Oleoyl ethanolamine (OEA or NOE)
  • Oxytocin
  • Palmitoylethanolamide (PEA)
  • Hydrogen sulphide (H2S)

Exogenous TRPV1 agonists:

  • Alcohol17
  • AM404
    • FAAH inhibitors also appear to act as TRPV1 agonists.18
  • Arvanil (AR) synthetic “hybrid” agonist of CB1R and TRPV119
  • Capsaicin (CP)19
  • CBD (activation/desensitization)
    • TRPV1 agonist
      • possibly antipsychotic effect20
    • TRPA1 (ankyrin type 1; activation/desensitization)
    • TRPV2 (vanilloid type 2; activation/desensitization)
    • TRPM8 (melastatin type 8; inhibition)
  • D3, vitamin D21
    • Partial agonist
  • Caffeine (1,3,7-trimethylxanthine)2217
    • TRPV1 agonist23
    • TRPA1 agonist in rodents23
    • TRPA1 antagonist in humans23
  • Olvanil (OL)19
    • Capsaicin derivative

TRPV1 antagonists:

  • Capsazepine
    • blocked the pain-relieving effect of CBD24
    • competitive antagonist for capsaicin and resiniferatoxin5
  • (E)-CBG (cannabigerol)2526
    • weak TRPV1 and TRPV2 agonist
  • Iodo-Rsiniferatoxin5
    • competitive antagonist
  • Ruthenium red5

Dopamine modulates TRPV127

  • D1/D5 agonists inhibited capsaicin-induced TRPV1 signaling
  • a D2 agonist did not alter TRPV1 signaling

2. PPARα (Peroxisome Proliferator-Activated Receptor alpha)

Three human isoforms of PPAR are known: PPAR-α (alpha), PPAR-β/δ (beta or delta) and PPAR-γ (gamma). Other names are NR1C1, NR1C2 and NR1C3.28

Occurrence of PPARα:2930
PPARs are located inside cells. Ligands must therefore first be taken up by the cell.31

  • PFC
    • PPARα (and PPARγ) are found on 70% of midbrain dopamine neurons and modulate dopamine- and cannabinoid-mediated behavior in mice32
  • Basal ganglia
  • Nucleus accumbens
    • PPARα (and PPARγ) are not found on GABA neurons in the nucleus accumbens32
  • Amygdala
    • PPARα is found on ~60% of glutamatergic neurons32
    • PPARγ is found on ~60 % of the GABA neurons32
  • VTA
  • Thalamus nuclei
  • Hippocampus (lower)
    • in CA1, CA2, CA3 and dentate gyrus

2.1. Control ranges of PPARα

Control ranges of PPARα are among others:2930

  • Modulation of VTA and amygdala
    • PPARα agonists reduce the activity of dopamine cells as well as the net output of the VTA through negative modulation of beta2-nAChR33
    • PPARα agonists reduce the number of spontaneously active dopamine neurons33
  • Reward
    • Mice that can trigger optogenetic stimulation of DA neurons in the midbrain themselves34 perceive this as rewarding32
    • THC and a PPARγ agonist (but not a PPARα agonist) inhibited self-stimulation in a dose-dependent manner32
    • A PPARγ agonist increased locomotion in the open field (sign of reduced anxiety), PPARα or PPARγ antagonists reduced it32
  • Motivation
  • Mood disorders, anhedonia, depression (see below for details)
  • Regulation of peroxisomes35
  • Regulation of mitochondrial β-oxidation35
  • Thermogenesis35
  • Lipoprotein metabolism35
    • PPARα agonists change the fatty acid profile36
    • PPARα is a transcription factor for several enzymes involved in fatty acid metabolism36
  • Energy homeostasis37
    • PPARα agonists increase glucose metabolism35
  • PPARα agonists cause insulin sensitization35
  • PPARα activation increases PEA and OEA levels, which can further maintain PPARα activity as PEA and OEA are PPARα agonists36
  • Neuroinflammation37
  • Proliferation/differentiation of glial cells37
  • antioxidant reactions37
  • Neurogenesis37
    • PPARα agonists increase BDNF and other neurotrophic factors38
  • Neurotransmission37
  • dopaminergic activity in terminal regions of the VTA
    • acute or chronic stimulation of PPARα influences β2nAChRs in dopaminergic neurons in the VTA3339
    • β2nAChR regulates firing rate of dopaminergic neurons in the VTA40
    • chronic administration of the synthetic PPARα agonist fenofibrate41
      • reduces the phosphorylation of β2nAChRs
      • resulting in increased phasic firing of VTA dopamine neurons
      • alleviated depressive symptoms
      • restored dopaminergic response to relevant stimuli in the nucleus accumbens
  • Orchestration and modulation of stress reactions42
    • by means of increased biosynthesis of neurosteroids and allopregnanolone/pregnanolone43
  • fewer side effects than selective PPARγ agonists, which are only of limited use due to side effects such as weight gain, heart failure, bone fractures, macular edema and peripheral edema44

2.2. What influences PPARα

PPARα is influenced by:

  • Stress29
    • various chronic stress protocols that induce depression symptoms in rodents. (social defeat, unavoidable stress and social isolation) significantly reduce PPARα expression in the hippocampus, but not in the mPFC, nucleus accumbens or VTA
    • induced epigenetic PPARα downregulation with hypermethylation of the promoter region
    • a single dose of the PPARα agonist PEA caused stress-induced depression and PTSD in the socially isolated mouse, an animal model for prolonged stress-induced depression and PTSD:43454647
      • Allopregnanolone increased in PFC, amygdala, hippocampus and olfactory bulb
      • aggressive behavior attenuated
      • Depression symptoms reduced
      • Reduced anxiety symptoms
  • Low methionine diet48

2.3. Involvement of PPARα in disorders

PPARα is involved in various disorders:29

  • Depression4349
    • downregulated PPARα expression in the hippocampus increased depression symptoms in mice38
    • PPARα overexpression in the hippocampus had an antidepressant effect in mice3850
    • PPARα agonists have an antidepressant effect29
      • PEA has an antidepressant effect in mice51 and rats52
      • Fenofibrate has an antidepressant effect41
        • also via BDNF in the hippocampus53
      • Gemfibrozil has an antidepressant effect54
      • Quercetin has an antidepressant and estrogen-like effect55
    • Fluoxetine (SSRI) 38, venlafaxine (SNRI)56 and reboxetine (NRI) 57 are (also) dependent on PPARα for their antidepressant effect
  • ASS
    • PPARα agonists improved autistic symptoms58
      • PEA in humans59, in mice60 and rats61
      • Fenofibrate (selective agonist)6263
    • pPARγ agonists also improved autistic symptoms in mice:
      • Pioglitazone (selective agonist)6465
      • Diosgenin (selective agonist)66
    • PPARγ agonists proved to be protective against ASA67
      • Pioglitazone68
    • autistic behavioral deficits correlate with reduced PPARα expression levels in PFC and hippocampus in animal models
      • repetitive behavior69
      • Behavioral rigidity69
  • Huntington70
  • Multiple sclerosis71727374
  • Parkinson’s disease7136
  • Alzheimer’s disease717576
  • Neuropathic pain71
  • Nicotine addiction
    • PPARα agonists are discussed as active ingredients against (nicotine) addiction777836
    • PPARα agonists reduce the increased locomotion triggered by nicotine33
  • PTSD
    • reduced hair and blood levels of various PPARα agonists7980 81 44
  • ADHD: no positive effect known to date
    • A common denominator of all neuropsychiatric disorders, including schizophrenia and ADHD, is an increased inflammatory response of the brain, which can arise in a variety of ways:82
      • Exposure to pro-inflammatory substances during development
      • Accumulation of degenerated neurons, oxidized proteins, glycated products or lipid peroxidation in the adult brain
    • against the background of the anti-inflammatory effect of PPARα agonists and the activating effect on phasic dopamine in the VTA described above, we do not rule out a helpful contribution of PPARα agonists in ADHD

2.4. Agonists and antagonists of PPARα

Endogenous agonists:

  • polyunsaturated fatty acids29
    • Arachidonic acid31
  • saturated fatty acids29
  • Eicosanoids29
    • 8-Hydroxyeicosatetraenoic acid83
  • Leukotrienes29
  • oxidized fatty acids29
  • oxidized phospholipids29
  • Polyphenols83
    • Resveratrol83
  • Fatty acid ethanolamides29
    • Anandamide (AEA, arachidonoylethanolamide85 (partial agonist)86
    • PEA (palmitoylethanolamide)87
      • Binding affinity in the nanomolar range (= low Kd = high binding)29
    • OEA (oleoylethanolamide)88
      • Binding affinity in the nanomolar range (= low Kd = high binding)29
  • Oleamide ((Z)-octadec-9-enamide)89

Exogenous agonists:

  • CBD
  • CBDA (cannabidiolic acid)
    • PPAR-α and PPAR-γ agonist90
  • (E)-CBG (cannabigerol)
    • PPAR-α and PPAR-γ agonist90
      Fibrates
    • Fenofibrate29
    • Gemfibrozil29
    • Bezafibrate31
    • Ciprofibrate83
  • GW764729
  • WY-1464329
  • synthetic piperidine agonists
    • CP-865529
    • CP-775146
    • CP-868388

Agonists by binding strength Kd in nanoMolar (nM) (low Kd = high binding):84 Nanomolar = high binding, micromolar (mM) = low binding.

  • Bezafibroyl-CoA thioester: 2.7 nM

  • Linoleic acid: 4.8 nM

  • Oleic acid: 5.9 nM

  • Linolenic acid: 7.9 nM

  • CP-868388: 10.8 nM (Ki)

  • Wy14643: 11.06 nM (Ki)i83

  • Bezafibrate: 13.1 nM

  • Arachidonic acid: 17.3 nM

  • CP-775146: 24.5 nM (Ki)

  • WY14643: 28.8 nM

  • Parinaric acid: 30.0 nM

  • Leukotriene LTB4: 60.8 nM

  • CP-865529: 74 nM (Ki)

  • 8-Hydroxyeicosatetraenoic acid: 100 nM83

  • PEA (palmitoylethanolamide): probably nanomolar; Kd unknown, EC50 value: 3.1 ± 0.4 µM

  • OEA (oleoylethanolamide): nanomolar

  • Stearic acid: weak

  • Fenofibrate 10-20 μM / mM83

3. PPARγ (Peroxisome Proliferator-Activated Receptor gamma)

It is possible that PPARγ agonists could help to normalize the chronobiorhythm that is shifted in ADHD.
In vitro, the PPARγ agonist rosiglitazone significantly equalized the chronobiological patterns in cultured human skin fibroblasts from persons with ADHD and control groups by causing phase shifts in the expression of the clock genes BMAL1, PER3 and CRY1. The amplitude and phase of CLOCK1, NPAS2 and PER1 were only slightly altered, while the gene expression of PER2 and PER3 was not changed at all.91

4. GPR55

GPR55 has been associated with various physiopathological conditions, such as92

  • motor coordination
  • Pain
  • Metabolic disorders
  • Vascular functions
  • Bone physiology
  • Cancer

Agonist:

  • PEA (palmitoylethanolamide)29
  • LPI (lysophosphatidylinositol)92
  • THC (probably binds without activating effect)92

Antagonist:

  • CID1602004693

5. GPR119

GPR-119 is mainly expressed in the pancreas and the gastrointestinal tract94
GPR-119 serves as a glucose-dependent insulinotropic receptor95
GPR-119 is coupled to Gαs in the insulin-producing islet cells of the pancreas95

Agonist:

  • OEA (oleoylethanolamide)96

6. More GPR

Other receptors associated with the cannabinoid system were discussed92

  • GPR 3
  • GPR 6
  • GPR12
  • GPR18
    • Lymphatic tissue (frequent)
    • Brain (moderate)
    • Lungs (moderate)
    • Testicles (moderate)
    • Ovaries (moderate)
    • Agonists:
      • NAGly (N-arachidonoyl glycine)
      • RvD2 (Resolvin D2)

  1. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997): The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997 Oct 23;389(6653):816-24. doi: 10.1038/39807. PMID: 9349813.

  2. Zheng J (2013): Molecular mechanism of TRP channels. Compr Physiol. 2013 Jan;3(1):221-42. doi: 10.1002/cphy.c120001. PMID: 23720286; PMCID: PMC3775668. REVIEW

  3. Geron M, Hazan A, Priel A (2017): Animal Toxins Providing Insights into TRPV1 Activation Mechanism. Toxins (Basel). 2017 Oct 16;9(10):326. doi: 10.3390/toxins9100326. PMID: 29035314; PMCID: PMC5666373. REVIEW

  4. Min JW, Liu WH, He XH, Peng BW (2013): Different types of toxins targeting TRPV1 in pain. Toxicon. 2013 Sep;71:66-75. doi: 10.1016/j.toxicon.2013.05.016. PMID: 23732125. REVIEW

  5. Schwarz (2015): Die Rolle des TRPV1-Rezeptors im Cerebellumcortex, Dissertation german

  6. Yao Z, Kamau PM, Han Y, Hu J, Luo A, Luo L, Zheng J, Tian Y, Lai R (2019): The Latoia consocia Caterpillar Induces Pain by Targeting Nociceptive Ion Channel TRPV1. Toxins (Basel). 2019 Nov 27;11(12):695. doi: 10.3390/toxins11120695. PMID: 31783580; PMCID: PMC6950366.

  7. Serra GP, Guillaumin A, Dumas S, Vlcek B, Wallén-Mackenzie Å. Midbrain Dopamine Neurons Defined by TrpV1 Modulate Psychomotor Behavior (2021): Front Neural Circuits. 2021 Nov 11;15:726893. doi: 10.3389/fncir.2021.726893. PMID: 34858142; PMCID: PMC8632262.

  8. Nagaoka K, Nagashima T, Asaoka N, Yamamoto H, Toda C, Kayanuma G, Siswanto S, Funahashi Y, Kuroda K, Kaibuchi K, Mori Y, Nagayasu K, Shirakawa H, Kaneko S (2021): Striatal TRPV1 activation by acetaminophen ameliorates dopamine D2 receptor antagonist-induced orofacial dyskinesia. JCI Insight. 2021 May 24;6(10):e145632. doi: 10.1172/jci.insight.145632. PMID: 33857021; PMCID: PMC8262333.

  9. Nam JH, Park ES, Won SY, Lee YA, Kim KI, Jeong JY, Baek JY, Cho EJ, Jin M, Chung YC, Lee BD, Kim SH, Kim EG, Byun K, Lee B, Woo DH, Lee CJ, Kim SR, Bok E, Kim YS, Ahn TB, Ko HW, Brahmachari S, Pletinkova O, Troconso JC, Dawson VL, Dawson TM, Jin BK (2015): TRPV1 on astrocytes rescues nigral dopamine neurons in Parkinson’s disease via CNTF. Brain. 2015 Dec;138(Pt 12):3610-22. doi: 10.1093/brain/awv297. PMID: 26490328; PMCID: PMC4840550.

  10. Rudd JA, Nalivaiko E, Matsuki N, Wan C, Andrews PL (2015): The involvement of TRPV1 in emesis and anti-emesis. Temperature (Austin). 2015 May 21;2(2):258-76. doi: 10.1080/23328940.2015.1043042. PMID: 27227028; PMCID: PMC4843889. REVIEW

  11. Mezey E, Tóth ZE, Cortright DN, Arzubi MK, Krause JE, Elde R, Guo A, Blumberg PM, Szallasi A (2000): Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3655-60. doi: 10.1073/pnas.97.7.3655. PMID: 10725386; PMCID: PMC16295.

  12. Tóth A, Boczán J, Kedei N, Lizanecz E, Bagi Z, Papp Z, Edes I, Csiba L, Blumberg PM (2005): Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. Brain Res Mol Brain Res. 2005 Apr 27;135(1-2):162-8. doi: 10.1016/j.molbrainres.2004.12.003. PMID: 15857679.

  13. Micale V, Cristino L, Tamburella A, Petrosino S, Leggio GM, Drago F, Di Marzo V (2009): Anxiolytic effects in mice of a dual blocker of fatty acid amide hydrolase and transient receptor potential vanilloid type-1 channels. Neuropsychopharmacology. 2009 Feb;34(3):593-606. doi: 10.1038/npp.2008.98. PMID: 18580871.

  14. Coelho AA, Lima-Bastos S, Gobira PH, Lisboa SF (2023): Endocannabinoid signaling and epigenetics modifications in the neurobiology of stress-related disorders. Neuronal Signal. 2023 Jul 25;7(2):NS20220034. doi: 10.1042/NS20220034. PMID: 37520658; PMCID: PMC10372471. REVIEW

  15. Benítez-Angeles M, Morales-Lázaro SL, Juárez-González E, Rosenbaum T (2020): TRPV1: Structure, Endogenous Agonists, and Mechanisms. Int J Mol Sci. 2020 May 12;21(10):3421. doi: 10.3390/ijms21103421. PMID: 32408609; PMCID: PMC7279265. REVIEW

  16. Hwang SW, Cho H, Kwak J, Lee SY, Kang CJ, Jung J, Cho S, Min KH, Suh YG, Kim D, Oh U (2000): Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc Natl Acad Sci U S A. 2000 May 23;97(11):6155-60. doi: 10.1073/pnas.97.11.6155. PMID: 10823958; PMCID: PMC18574.

  17. North KC, Chang J, Bukiya AN, Dopico AM (2018): Extra-endothelial TRPV1 channels participate in alcohol and caffeine actions on cerebral artery diameter. Alcohol. 2018 Dec;73:45-55. doi: 10.1016/j.alcohol.2018.04.002. PMID: 30268908; PMCID: PMC6417832.

  18. Morgese MG, Cassano T, Cuomo V, Giuffrida A (2007): Anti-dyskinetic effects of cannabinoids in a rat model of Parkinson’s disease: role of CB(1) and TRPV1 receptors. Exp Neurol. 2007 Nov;208(1):110-9. doi: 10.1016/j.expneurol.2007.07.021. PMID: 17900568; PMCID: PMC2128772.

  19. Hayase T (2011): Differential effects of TRPV1 receptor ligands against nicotine-induced depression-like behaviors. BMC Pharmacol. 2011 Jul 18;11:6. doi: 10.1186/1471-2210-11-6. PMID: 21767384; PMCID: PMC3155896.

  20. Fernández-Ruiz J, Hernández M, Ramos JA (2010): Cannabinoid-dopamine interaction in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther. 2010 Jun;16(3):e72-91. doi: 10.1111/j.1755-5949.2010.00144.x. PMID: 20406253; PMCID: PMC6493786. REVIEW

  21. Long W, Fatehi M, Soni S, Panigrahi R, Philippaert K, Yu Y, Kelly R, Boonen B, Barr A, Golec D, Campbell SA, Ondrusova K, Hubert M, Baldwin T, Lemieux MJ, Light PE (2020): Vitamin D is an endogenous partial agonist of the transient receptor potential vanilloid 1 channel. J Physiol. 2020 Oct;598(19):4321-4338. doi: 10.1113/JP279961. PMID: 32721035; PMCID: PMC7589233.

  22. Puthumana EA, Muhamad L, Young LA, Chu XP (2024): TRPA1, TRPV1, and Caffeine: Pain and Analgesia. Int J Mol Sci. 2024 Jul 19;25(14):7903. doi: 10.3390/ijms25147903. PMID: 39063144; PMCID: PMC11276833. REVIEW

  23. Nagatomo K, Kubo Y (2008): Caffeine activates mouse TRPA1 channels but suppresses human TRPA1 channels. Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17373-8. doi: 10.1073/pnas.0809769105. PMID: 18988737; PMCID: PMC2582301.

  24. Mlost J, Wąsik A, Starowicz K (2019): Role of endocannabinoid system in dopamine signalling within the reward circuits affected by chronic pain. Pharmacol Res. 2019 May;143:40-47. doi: 10.1016/j.phrs.2019.02.029. PMID: 30831242. REVIEW

  25. Kumar U (2024): Cannabinoids: Role in Neurological Diseases and Psychiatric Disorders. Int J Mol Sci. 2024 Dec 27;26(1):152. doi: 10.3390/ijms26010152. PMID: 39796008; PMCID: PMC11720483. REVIEW

  26. Radwan MM, Chandra S, Gul S, ElSohly MA (2021): Cannabinoids, Phenolics, Terpenes and Alkaloids of Cannabis. Molecules. 2021 May 8;26(9):2774. doi: 10.3390/molecules26092774. PMID: 34066753; PMCID: PMC8125862. REVIEW

  27. Chakraborty S, Rebecchi M, Kaczocha M, Puopolo M (2016): Dopamine modulation of transient receptor potential vanilloid type 1 (TRPV1) receptor in dorsal root ganglia neurons. J Physiol. 2016 Mar 15;594(6):1627-42. doi: 10.1113/JP271198. PMID: 26563747; PMCID: PMC4799965.

  28. Corrales P, Vidal-Puig A, Medina-Gómez G (2018): PPARs and Metabolic Disorders Associated with Challenged Adipose Tissue Plasticity. Int J Mol Sci. 2018 Jul 21;19(7):2124. doi: 10.3390/ijms19072124. PMID: 30037087; PMCID: PMC6073677. REVIEW

  29. Scheggi S, Pinna G, Braccagni G, De Montis MG, Gambarana C (2022): PPARα Signaling: A Candidate Target in Psychiatric Disorder Management. Biomolecules. 2022 May 20;12(5):723. doi: 10.3390/biom12050723. PMID: 35625650; PMCID: PMC9138493. REVIEW

  30. Warden A, Truitt J, Merriman M, Ponomareva O, Jameson K, Ferguson LB, Mayfield RD, Harris RA (2016): Localization of PPAR isotypes in the adult mouse and human brain. Sci Rep. 2016 Jun 10;6:27618. doi: 10.1038/srep27618. PMID: 27283430; PMCID: PMC4901333.

  31. Rankin L, Fowler CJ (2020): The Basal Pharmacology of Palmitoylethanolamide. Int J Mol Sci. 2020 Oct 26;21(21):7942. doi: 10.3390/ijms21217942. PMID: 33114698; PMCID: PMC7662788. REVIEW

  32. Hempel B, Crissman M, Pari S, Klein B, Bi GH, Alton H, Xi ZX (2023): PPARα and PPARγ are expressed in midbrain dopamine neurons and modulate dopamine- and cannabinoid-mediated behavior in mice. Mol Psychiatry. 2023 Oct;28(10):4203-4214. doi: 10.1038/s41380-023-02182-0. PMID: 37479780; PMCID: PMC10799974.

  33. Melis M, Carta S, Fattore L, Tolu S, Yasar S, Goldberg SR, Fratta W, Maskos U, Pistis M (2010): Peroxisome proliferator-activated receptors-alpha modulate dopamine cell activity through nicotinic receptors. Biol Psychiatry. 2010 Aug 1;68(3):256-64. doi: 10.1016/j.biopsych.2010.04.016. PMID: 20570248; PMCID: PMC2907468.

  34. Song R, Soler-Cedeño O, Xi ZX (2024): Optical Intracranial Self-Stimulation (oICSS): A New Behavioral Model for Studying Drug Reward and Aversion in Rodents. Int J Mol Sci. 2024 Mar 19;25(6):3455. doi: 10.3390/ijms25063455. PMID: 38542425; PMCID: PMC10970671. REVIEW

  35. Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S (2011): The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J Adv Pharm Technol Res. 2011 Oct;2(4):236-40. doi: 10.4103/2231-4040.90879. PMID: 22247890; PMCID: PMC3255347.

  36. Melis M, Carta G, Pistis M, Banni S (2013): Physiological role of peroxisome proliferator-activated receptors type α on dopamine systems. CNS Neurol Disord Drug Targets. 2013 Feb 1;12(1):70-7. doi: 10.2174/1871527311312010012. PMID: 23394525. REVIEW

  37. Wójtowicz S, Strosznajder AK, Jeżyna M, Strosznajder JB (2020): The Novel Role of PPAR Alpha in the Brain: Promising Target in Therapy of Alzheimer’s Disease and Other Neurodegenerative Disorders. Neurochem Res. 2020 May;45(5):972-988. doi: 10.1007/s11064-020-02993-5. PMID: 32170673; PMCID: PMC7162839. REVIEW

  38. Song L, Wang H, Wang YJ, Wang JL, Zhu Q, Wu F, Zhang W, Jiang B (2018): Hippocampal PPARα is a novel therapeutic target for depression and mediates the antidepressant actions of fluoxetine in mice. Br J Pharmacol. 2018 Jul;175(14):2968-2987. doi: 10.1111/bph.14346. PMID: 29722018; PMCID: PMC6016645.

  39. Melis M, Scheggi S, Carta G, Madeddu C, Lecca S, Luchicchi A, Cadeddu F, Frau R, Fattore L, Fadda P, Ennas MG, Castelli MP, Fratta W, Schilstrom B, Banni S, De Montis MG, Pistis M (2013): PPARα regulates cholinergic-driven activity of midbrain dopamine neurons via a novel mechanism involving α7 nicotinic acetylcholine receptors. J Neurosci. 2013 Apr 3;33(14):6203-11. doi: 10.1523/JNEUROSCI.4647-12.2013. PMID: 23554501; PMCID: PMC6618938.

  40. Mameli-Engvall M, Evrard A, Pons S, Maskos U, Svensson TH, Changeux JP, Faure P (2006): Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors. Neuron. 2006 Jun 15;50(6):911-21. doi: 10.1016/j.neuron.2006.05.007. PMID: 16772172.

  41. Scheggi S, Melis M, De Felice M, Aroni S, Muntoni AL, Pelliccia T, Gambarana C, De Montis MG, Pistis M (2016): PPARα modulation of mesolimbic dopamine transmission rescues depression-related behaviors. Neuropharmacology. 2016 Nov;110(Pt A):251-259. doi: 10.1016/j.neuropharm.2016.07.024. PMID: 27457507.

  42. Nisbett KE, Pinna G (2018): Emerging Therapeutic Role of PPAR-α in Cognition and Emotions. Front Pharmacol. 2018 Oct 2;9:998. doi: 10.3389/fphar.2018.00998. PMID: 30356872; PMCID: PMC6190882.

  43. Locci A, Pinna G (2019): Stimulation of Peroxisome Proliferator-Activated Receptor-α by N-Palmitoylethanolamine Engages Allopregnanolone Biosynthesis to Modulate Emotional Behavior. Biol Psychiatry. 2019 Jun 15;85(12):1036-1045. doi: 10.1016/j.biopsych.2019.02.006. PMID: 30955840.

  44. Tufano M, Pinna G (2020): Is There a Future for PPARs in the Treatment of Neuropsychiatric Disorders? Molecules. 2020 Feb 27;25(5):1062. doi: 10.3390/molecules25051062. PMID: 32120979; PMCID: PMC7179196. REVIEW

  45. Locci A, Geoffroy P, Miesch M, Mensah-Nyagan AG, Pinna G (2017): Social Isolation in Early versus Late Adolescent Mice Is Associated with Persistent Behavioral Deficits That Can Be Improved by Neurosteroid-Based Treatment. Front Cell Neurosci. 2017 Aug 29;11:208. doi: 10.3389/fncel.2017.00208. PMID: 28900387; PMCID: PMC5581875.

  46. Pinna G (2010): In a mouse model relevant for post-traumatic stress disorder, selective brain steroidogenic stimulants (SBSS) improve behavioral deficits by normalizing allopregnanolone biosynthesis. Behav Pharmacol. 2010 Sep;21(5-6):438-50. doi: 10.1097/FBP.0b013e32833d8ba0. PMID: 20716970; PMCID: PMC2942072. REVIEW

  47. Matrisciano F, Pinna G (2021): PPAR-α Hypermethylation in the Hippocampus of Mice Exposed to Social Isolation Stress Is Associated with Enhanced Neuroinflammation and Aggressive Behavior. Int J Mol Sci. 2021 Oct 1;22(19):10678. doi: 10.3390/ijms221910678. PMID: 34639019; PMCID: PMC8509148.

  48. Zhang Y, Liu T, Pan F, Li Y, Wang D, Pang J, Sang H, Xi Y, Shi L, Liu Z (2025): Dietary Methionine Restriction Alleviates Cognitive Impairment in Alzheimer’s Disease Mice via Sex-Dependent Modulation on Gut Microbiota and Tryptophan Metabolism: A Multiomics Analysis. J Agric Food Chem. 2025 Jan 15;73(2):1356-1372. doi: 10.1021/acs.jafc.4c09878. PMID: 39745486.

  49. De Gregorio D, Manchia M, Carpiniello B, Valtorta F, Nobile M, Gobbi G, Comai S (2019): Role of palmitoylethanolamide (PEA) in depression: Translational evidence: Special Section on “Translational and Neuroscience Studies in Affective Disorders”. Section Editor, Maria Nobile MD, PhD. This Section of JAD focuses on the relevance of translational and neuroscience studies in providing a better understanding of the neural basis of affective disorders. The main aim is to briefly summaries relevant research findings in clinical neuroscience with particular regards to specific innovative topics in mood and anxiety disorders. J Affect Disord. 2019 Aug 1;255:S0165-0327(18)31599-4. doi: 10.1016/j.jad.2018.10.117. PMID: 30391203. REVIEW

  50. Niu QQ, Xi YT, Zhang CR, Li XY, Li CZ, Wang HD, Li P, Yin YL (2024): Potential mechanism of perillaldehyde in the treatment of nonalcoholic fatty liver disease based on network pharmacology and molecular docking. Eur J Pharmacol. 2024 Dec 15;985:177092. doi: 10.1016/j.ejphar.2024.177092. PMID: 39510336.

  51. Zhang L, Tang W, Ouyang Y, Zhang M, Li R, Sun L, Liu C, Yu H (2023): N-palmitoylethanolamine modulates hippocampal neuroplasticity in rats with stress-induced depressive behavior phenotype. Eur J Pharmacol. 2023 Oct 15;957:176041. doi: 10.1016/j.ejphar.2023.176041. PMID: 37673363.

  52. Li M, Wang D, Bi W, Jiang ZE, Piao R, Yu H (2019): N-Palmitoylethanolamide Exerts Antidepressant-Like Effects in Rats: Involvement of PPARα Pathway in the Hippocampus. J Pharmacol Exp Ther. 2019 Apr;369(1):163-172. doi: 10.1124/jpet.118.254524. PMID: 30635472.

  53. Jiang B, Wang YJ, Wang H, Song L, Huang C, Zhu Q, Wu F, Zhang W (2017): Antidepressant-like effects of fenofibrate in mice via the hippocampal brain-derived neurotrophic factor signalling pathway. Br J Pharmacol. 2017 Jan;174(2):177-194. doi: 10.1111/bph.13668. PMID: 27861729; PMCID: PMC5192965.

  54. Ni YF, Wang H, Gu QY, Wang FY, Wang YJ, Wang JL, Jiang B (2018): Gemfibrozil has antidepressant effects in mice: Involvement of the hippocampal brain-derived neurotrophic factor system. J Psychopharmacol. 2018 Apr;32(4):469-481. doi: 10.1177/0269881118762072. PMID: 29534628.

  55. Yao R, Cui W, Wang W, Feng C, Chen Y, Zhao X (2025): Metabolomics revealed that quercetin improved spleen metabolism disorders and regulated the brain-spleen axis in perimenopausal depression model rats. J Pharm Biomed Anal. 2025 Jun 15;258:116744. doi: 10.1016/j.jpba.2025.116744. PMID: 39965276.

  56. Chen C, Shen JH, Xu H, Chen P, Chen F, Guan YX, Jiang B, Wu ZH (2019): Hippocampal PPARα is involved in the antidepressant-like effects of venlafaxine in mice. Brain Res Bull. 2019 Nov;153:171-180. doi: 10.1016/j.brainresbull.2019.08.016. PMID: 31445056.

  57. Gao S, Zhang X, Xu H, Miao D, Qian J, Wu Z, Shi W (2022): Promoting the hippocampal PPARα expression participates in the antidepressant mechanism of reboxetine, a selective norepinephrine reuptake inhibitor. Behav Brain Res. 2022 Jan 7;416:113535. doi: 10.1016/j.bbr.2021.113535. PMID: 34416301.

  58. Elnahas EM, Abuelezz SA, Mohamad MI, Nabil MM, Abdelraouf SM, Bahaa N, Hassan GAM, Aboul-Fotouh S (2022): Novel role of peroxisome proliferator activated receptor-α in valproic acid rat model of autism: Mechanistic study of risperidone and metformin monotherapy versus combination. Prog Neuropsychopharmacol Biol Psychiatry. 2022 Jun 8;116:110522. doi: 10.1016/j.pnpbp.2022.110522. PMID: 35131336.

  59. Colizzi M, Bortoletto R, Costa R, Zoccante L (2021): Palmitoylethanolamide and Its Biobehavioral Correlates in Autism Spectrum Disorder: A Systematic Review of Human and Animal Evidence. Nutrients. 2021 Apr 18;13(4):1346. doi: 10.3390/nu13041346. PMID: 33919499; PMCID: PMC8073263.

  60. Cristiano C, Pirozzi C, Coretti L, Cavaliere G, Lama A, Russo R, Lembo F, Mollica MP, Meli R, Calignano A, Mattace Raso G (2018): Palmitoylethanolamide counteracts autistic-like behaviours in BTBR T+tf/J mice: Contribution of central and peripheral mechanisms. Brain Behav Immun. 2018 Nov;74:166-175. doi: 10.1016/j.bbi.2018.09.003. PMID: 30193877.

  61. Mirza R, Sharma B (2018): Selective modulator of peroxisome proliferator-activated receptor-α protects propionic acid induced autism-like phenotypes in rats. Life Sci. 2018 Dec 1;214:106-117. doi: 10.1016/j.lfs.2018.10.045. PMID: 30366038.

  62. Mirza R, Sharma B (2019): Benefits of Fenofibrate in prenatal valproic acid-induced autism spectrum disorder related phenotype in rats. Brain Res Bull. 2019 Apr;147:36-46. doi: 10.1016/j.brainresbull.2019.02.003. PMID: 30769127.

  63. Scheggi S, Guzzi F, Braccagni G, De Montis MG, Parenti M, Gambarana C (2020): Targeting PPARα in the rat valproic acid model of autism: focus on social motivational impairment and sex-related differences. Mol Autism. 2020 Jul 27;11(1):62. doi: 10.1186/s13229-020-00358-x. PMID: 32718349; PMCID: PMC7385875.

  64. Mirza R, Sharma B (2019): Beneficial effects of pioglitazone, a selective peroxisome proliferator-activated receptor-γ agonist in prenatal valproic acid-induced behavioral and biochemical autistic like features in Wistar rats. Int J Dev Neurosci. 2019 Aug;76:6-16. doi: 10.1016/j.ijdevneu.2019.05.006. PMID: 31128204.

  65. Mirza R, Sharma B (2019): A selective peroxisome proliferator-activated receptor-γ agonist benefited propionic acid induced autism-like behavioral phenotypes in rats by attenuation of neuroinflammation and oxidative stress. Chem Biol Interact. 2019 Sep 25;311:108758. doi: 10.1016/j.cbi.2019.108758. PMID: 31348919.

  66. Reza Naghdi M, Ahadi R, Motamed Nezhad A, Sadat Ahmadi Tabatabaei F, Soleimani M, Hajisoltani R (2024): The neuroprotective effect of Diosgenin in the rat Valproic acid model of autism. Brain Res. 2024 Sep 1;1838:148963. doi: 10.1016/j.brainres.2024.148963. PMID: 38705555.

  67. Khera R, Mehan S, Kumar S, Sethi P, Bhalla S, Prajapati A (2022): Role of JAK-STAT and PPAR-Gamma Signalling Modulators in the Prevention of Autism and Neurological Dysfunctions. Mol Neurobiol. 2022 Jun;59(6):3888-3912. doi: 10.1007/s12035-022-02819-1. PMID: 35437700. REVIEW

  68. Sandhu A, Rawat K, Gautam V, Kumar A, Sharma A, Bhatia A, Grover S, Saini L, Saha L (2024): Neuroprotective effect of PPAR gamma agonist in rat model of autism spectrum disorder: Role of Wnt/β-catenin pathway. Prog Neuropsychopharmacol Biol Psychiatry. 2024 Dec 20;135:111126. doi: 10.1016/j.pnpbp.2024.111126. PMID: 39179196.

  69. D’Agostino G, Cristiano C, Lyons DJ, Citraro R, Russo E, Avagliano C, Russo R, Raso GM, Meli R, De Sarro G, Heisler LK, Calignano A (2015): Peroxisome proliferator-activated receptor alpha plays a crucial role in behavioral repetition and cognitive flexibility in mice. Mol Metab. 2015 May 2;4(7):528-36. doi: 10.1016/j.molmet.2015.04.005. PMID: 26137440; PMCID: PMC4481424.

  70. Bhateja DK, Dhull DK, Gill A, Sidhu A, Sharma S, Reddy BV, Padi SS (2012): Peroxisome proliferator-activated receptor-α activation attenuates 3-nitropropionic acid induced behavioral and biochemical alterations in rats: possible neuroprotective mechanisms. Eur J Pharmacol. 2012 Jan 5;674(1):33-43. doi: 10.1016/j.ejphar.2011.10.029. PMID: 22056833.

  71. Das A, Balakrishnan P (2025): Mechanisms and clinical applications of palmitoylethanolamide (PEA) in the treatment of neuropathic pain. Inflammopharmacology. 2025 Jan;33(1):121-133. doi: 10.1007/s10787-024-01623-8. PMID: 39714723. REVIEW

  72. Abulaban AA, Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Alanazi A, Alexiou A, Papadakis M, Batiha GE (2024): Role of fenofibrate in multiple sclerosis. Eur J Med Res. 2024 Feb 9;29(1):113. doi: 10.1186/s40001-024-01700-2. PMID: 38336772; PMCID: PMC10854163. REVIEW

  73. Titus C, Hoque MT, Bendayan R (2024): PPAR agonists for the treatment of neuroinflammatory diseases. Trends Pharmacol Sci. 2024 Jan;45(1):9-23. doi: 10.1016/j.tips.2023.11.004. PMID: 38065777. REVIEW

  74. Valenza M, Facchinetti R, Steardo L, Scuderi C (2022): Palmitoylethanolamide and White Matter Lesions: Evidence for Therapeutic Implications. Biomolecules. 2022 Aug 27;12(9):1191. doi: 10.3390/biom12091191. PMID: 36139030; PMCID: PMC9496237. REVIEW

  75. Beggiato S, Tomasini MC, Cassano T, Ferraro L (2020): Chronic Oral Palmitoylethanolamide Administration Rescues Cognitive Deficit and Reduces Neuroinflammation, Oxidative Stress, and Glutamate Levels in A Transgenic Murine Model of Alzheimer’s Disease. J Clin Med. 2020 Feb 5;9(2):428. doi: 10.3390/jcm9020428. PMID: 32033363; PMCID: PMC7074257.

  76. Sáez-Orellana F, Octave JN, Pierrot N (2020): Alzheimer’s Disease, a Lipid Story: Involvement of Peroxisome Proliferator-Activated Receptor α. Cells. 2020 May 14;9(5):1215. doi: 10.3390/cells9051215. PMID: 32422896; PMCID: PMC7290654. REVIEW

  77. Melis M, Pistis M (2014): Targeting the interaction between fatty acid ethanolamides and nicotinic receptors: therapeutic perspectives. Pharmacol Res. 2014 Aug;86:42-9. doi: 10.1016/j.phrs.2014.03.009. PMID: 24704146. REVIEW

  78. Melis M, Pillolla G, Luchicchi A, Muntoni AL, Yasar S, Goldberg SR, Pistis M (2008): Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors. J Neurosci. 2008 Dec 17;28(51):13985-94. doi: 10.1523/JNEUROSCI.3221-08.2008. PMID: 19091987; PMCID: PMC3169176.

  79. Wilker S, Pfeiffer A, Elbert T, Ovuga E, Karabatsiakis A, Krumbholz A, Thieme D, Schelling G, Kolassa IT (2016): Endocannabinoid concentrations in hair are associated with PTSD symptom severity. Psychoneuroendocrinology. 2016 May;67:198-206. doi: 10.1016/j.psyneuen.2016.02.010. PMID: 26923850.

  80. Aspesi D, Pinna G (2018): Could a blood test for PTSD and depression be on the horizon? Expert Rev Proteomics. 2018 Dec;15(12):983-1006. doi: 10.1080/14789450.2018.1544894. PMID: 30394136. REVIEW

  81. Pinna G (2018): Biomarkers for PTSD at the Interface of the Endocannabinoid and Neurosteroid Axis. Front Neurosci. 2018 Aug 6;12:482. doi: 10.3389/fnins.2018.00482. PMID: 30131663; PMCID: PMC6091574.

  82. Popa-Wagner A, Mitran S, Sivanesan S, Chang E, Buga AM (2013): ROS and brain diseases: the good, the bad, and the ugly. Oxid Med Cell Longev. 2013;2013:963520. doi: 10.1155/2013/963520. PMID: 24381719; PMCID: PMC3871919. REVIEW

  83. Contreras AV, Torres N, Tovar AR (2013): PPAR-α as a key nutritional and environmental sensor for metabolic adaptation. Adv Nutr. 2013 Jul 1;4(4):439-52. doi: 10.3945/an.113.003798. PMID: 23858092; PMCID: PMC3941823. REVIEW

  84. Lin Q, Ruuska SE, Shaw NS, Dong D, Noy N (1999): Ligand selectivity of the peroxisome proliferator-activated receptor alpha. Biochemistry. 1999 Jan 5;38(1):185-90. doi: 10.1021/bi9816094. PMID: 9890897.

  85. Scheggi S, Pinna G, Braccagni G, De Montis MG, Gambarana C (2022): PPARα Signaling: A Candidate Target in Psychiatric Disorder Management. Biomolecules. 2022 May 20;12(5):723. doi: 10.3390/biom12050723. PMID: 35625650; PMCID: PMC9138493. REVIEW}}): Vollagonist, schwache Bindung{{Centonze D, Battistini L, Maccarrone M (2008): The endocannabinoid system in peripheral lymphocytes as a mirror of neuroinflammatory diseases. Curr Pharm Des. 2008;14(23):2370-42. doi: 10.2174/138161208785740018. PMID: 18781987. REVIEW

  86. Covey DP, Yocky AG (2021): Endocannabinoid Modulation of Nucleus Accumbens Microcircuitry and Terminal Dopamine Release. Front Synaptic Neurosci. 2021 Aug 23;13:734975. doi: 10.3389/fnsyn.2021.734975. PMID: 34497503; PMCID: PMC8419321. REVIEW

  87. Ambrosino P, Soldovieri MV, Russo C, Taglialatela M (2013): Activation and desensitization of TRPV1 channels in sensory neurons by the PPARα agonist palmitoylethanolamide. Br J Pharmacol. 2013 Mar;168(6):1430-44. doi: 10.1111/bph.12029. PMID: 23083124; PMCID: PMC3596648.

  88. Blanco E, Galeano P, Holubiec MI, Romero JI, Logica T, Rivera P, Pavón FJ, Suarez J, Capani F, Rodríguez de Fonseca F (2015): Perinatal asphyxia results in altered expression of the hippocampal acylethanolamide/endocannabinoid signaling system associated to memory impairments in postweaned rats. Front Neuroanat. 2015 Nov 3;9:141. doi: 10.3389/fnana.2015.00141. PMID: 26578900; PMCID: PMC4630311.

  89. Kruk-Slomka M, Dzik A, Budzynska B, Biala G (2017): Endocannabinoid System: the Direct and Indirect Involvement in the Memory and Learning Processes-a Short Review. Mol Neurobiol. 2017 Dec;54(10):8332-8347. doi: 10.1007/s12035-016-0313-5. PMID: 27924524; PMCID: PMC5684264. REVIEW

  90. D’Aniello E, Fellous T, Iannotti FA, Gentile A, Allarà M, Balestrieri F, Gray R, Amodeo P, Vitale RM, Di Marzo V (2019): Identification and characterization of phytocannabinoids as novel dual PPARα/γ agonists by a computational and in vitro experimental approach. Biochim Biophys Acta Gen Subj. 2019 Mar;1863(3):586-597. doi: 10.1016/j.bbagen.2019.01.002. PMID: 30611848.

  91. Grigore M, Gresita A, Hermann DM, Doeppner TR, Gheorman V, Glavan D, Popa-Wagner A (2025): Regulation of circadian gene activity in fibroblasts from ADHD patients through Rosiglitazone: a pilot study. J Neural Transm (Vienna). 2025 May;132(5):709-721. doi: 10.1007/s00702-025-02883-6. PMID: 39884973.

  92. Morales P, Reggio PH (2017): An Update on Non-CB1, Non-CB2 Cannabinoid Related G-Protein-Coupled Receptors. Cannabis Cannabinoid Res. 2017 Oct 1;2(1):265-273. doi: 10.1089/can.2017.0036. PMID: 29098189; PMCID: PMC5665501. REVIEW

  93. Galaj E, Bi GH, Yang HJ, Xi ZX (2020): Cannabidiol attenuates the rewarding effects of cocaine in rats by CB2, 5-HT1A and TRPV1 receptor mechanisms. Neuropharmacology. 2020 May 1;167:107740. doi: 10.1016/j.neuropharm.2019.107740. PMID: 31437433; PMCID: PMC7493134.

  94. Fredriksson R, Höglund PJ, Gloriam DE, Lagerström MC, Schiöth HB (2003): Seven evolutionarily conserved human rhodopsin G protein-coupled receptors lacking close relatives. FEBS Lett. 2003 Nov 20;554(3):381-8. doi: 10.1016/s0014-5793(03)01196-7. PMID: 14623098.

  95. Chu ZL, Carroll C, Alfonso J, Gutierrez V, He H, Lucman A, Pedraza M, Mondala H, Gao H, Bagnol D, Chen R, Jones RM, Behan DP, Leonard J (2008): A role for intestinal endocrine cell-expressed g protein-coupled receptor 119 in glycemic control by enhancing glucagon-like Peptide-1 and glucose-dependent insulinotropic Peptide release. Endocrinology. 2008 May;149(5):2038-47. doi: 10.1210/en.2007-0966. PMID: 18202141.

  96. Overton HA, Babbs AJ, Doel SM, Fyfe MC, Gardner LS, Griffin G, Jackson HC, Procter MJ, Rasamison CM, Tang-Christensen M, Widdowson PS, Williams GM, Reynet C (2006): Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab. 2006 Mar;3(3):167-75. doi: 10.1016/j.cmet.2006.02.004. PMID: 16517404.

Diese Seite wurde am 24.05.2025 zuletzt aktualisiert.