Rigidity and task switching problems - neurophysiological correlates
- 1. Increased tonic dopamine at D2R promotes rigidity
- 2. Noradrenaline reuptake inhibitors facilitate set-shifting
- 3. Beta blockers facilitate cognitive flexibility
1. Increased tonic dopamine at D2R promotes rigidity
Learning a response strategy to reinforcement occurs via phasic dopamine in the nucleus accumbens via D1 receptors.1
Increased tonic dopamine release greatly reduces phasic dopamine release, which results in particularly stable neuronal activity. This is associated with increased rigidity.2](https://dianakuenne.de/p/steinhausen-u-a-hrsg-handbuch-adhs)
The absence of anticipated rewards correlates with reduced tonic dopamine release in the nucleus accumbens. As this disinhibits phasic dopamine, it may facilitate cortico-striatal information processing that mediates behavioral flexibility.3 The reduction in tonic DA stimulation of D2 receptors is essential to enable the switch to a new response strategy once goal attainment criteria are changed.1 High dopamine and high D1R/D5R binding in the PFC cause increased LTP, persistence of mnemonic representations4 and may contribute to perseverative behavior and behavioral stereotypy, leaving patients unable to use new external cues to change ongoing behaviors.5
2. Noradrenaline reuptake inhibitors facilitate set-shifting
The learning and reversal of rules can be tested by extra-dimensional set shifting. The Intra-Extra Dimensional Set Shift (IED) is a computerized version of the Wisconsin Card Sorting Test and examines visual discrimination and the flexibility of attention set formation. 6
Noradrenaline facilitates changes in attention.7
- Lesions of the dorsal noradrenergic bundle selectively impair extradimensional set-shifting in rodents8
- the α2-adrenoreceptor antagonist idazoxan impairs extradimensional set-shifting in rats9
- the α2-adrenoreceptor antagonist atipamezole in rodent mPFC blocks the attentional shift, which was improved by the α1-adrenoreceptor antagonist benoxathian
- the α1-adrenoreceptor antagonist benoxathian alone did not influence the shift in attention10
- CRF fusion into the locus coeruleus improved extradimensional set-shifting at low doses, while higher doses impaired reversal learning.188
- Noradrenaline reuptake inhibitors improving behavioral flexibility11
- Atomoxetine improved set-shifting in rats with noradrenergic lesions, while it worsened performance in intact rats12
- Atomoxetine improved set-shifting at low doses13, while high doses worsened it 189
The α1/2-adrenoreceptor agonist clonidine dramatically impaired extradimensional set-shifting in healthy human volunteers in a task similar to the Wisconsin Card Sort Test. The α2-adrenoreceptor antagonist idazoxan showed the same effect, which was potentiated by additional clonidine administration.14
In contrast, the α2-adrenoreceptor agonist guanfacine did not affect cognitive performance in young healthy male adults15
3. Beta blockers facilitate cognitive flexibility
β-Adrenoreceptor blockade by beta-blockers such as propranolol and atenolol shows an improvement in cognitive flexibility16, while also reducing stress and anxiety levels, which could influence the outcome.6
Goto, Grace (2005): Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nat Neurosci. 2005 Jun;8(6):805-12. doi: 10.1038/nn1471. PMID: 15908948. ↥ ↥
Roessner, Rothenberger (2020): Neurochemie, S. 89, in [Steinhausen, Rothenberger, Döpfner (Herausgeber) (2020):: Handbuch ADHS; Grundlagen, Klinik, Therapie und Verlauf der Aufmerksamkeitsdefizit-Hyperaktivitätsstörung, Kohlhammer ↥
Meck, Benson (2002): Dissecting the brain’s internal clock: how frontal-striatal circuitry keeps time and shifts attention. Brain Cogn. 2002 Feb;48(1):195-211. doi: 10.1006/brcg.2001.1313. PMID: 11812042. ↥
El Khoury MA, Gorgievski V, Moutsimilli L, Giros B, Tzavara ET (2012): Interactions between the cannabinoid and dopaminergic systems: evidence from animal studies. Prog Neuropsychopharmacol Biol Psychiatry. 2012 Jul 2;38(1):36-50. doi: 10.1016/j.pnpbp.2011.12.005. PMID: 22300746. REVIEW ↥
Yang CR, Seamans JK, Gorelova N (1999): Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex. Neuropsychopharmacology. 1999 Aug;21(2):161-94. doi: 10.1016/S0893-133X(98)00112-2. PMID: 10432466. REVIEW ↥
Holland N, Robbins TW, Rowe JB (2021): The role of noradrenaline in cognition and cognitive disorders. Brain. 2021 Sep 4;144(8):2243-2256. doi: 10.1093/brain/awab111. PMID: 33725122; PMCID: PMC8418349. REVIEW ↥ ↥
Devauges V, Sara SJ (1990): Activation of the noradrenergic system facilitates an attentional shift in the rat. Behav Brain Res. 1990 Jun 18;39(1):19-28. doi: 10.1016/0166-4328(90)90118-x. PMID: 2167690. ↥
Tait DS, Brown VJ, Farovik A, Theobald DE, Dalley JW, Robbins TW (2007): Lesions of the dorsal noradrenergic bundle impair attentional set-shifting in the rat. Eur J Neurosci. 2007 Jun;25(12):3719-24. doi: 10.1111/j.1460-9568.2007.05612.x. PMID: 17610591. ↥
Rowe JB, Saunders JR, Durantou F, Robbins TW (1996): Systemic idazoxan impairs performance in a non-reversal shift test: implications for the role of the central noradrenergic systems in selective attention. J Psychopharmacol. 1996 Jan;10(3):188-94. doi: 10.1177/026988119601000303. PMID: 22302944. ↥
Lapiz MD, Morilak DA (2006): Noradrenergic modulation of cognitive function in rat medial prefrontal cortex as measured by attentional set shifting capability. Neuroscience. 2006 Feb;137(3):1039-49. doi: 10.1016/j.neuroscience.2005.09.031. PMID: 16298081. ↥
Seu E, Lang A, Rivera RJ, Jentsch JD (2009): Inhibition of the norepinephrine transporter improves behavioral flexibility in rats and monkeys. Psychopharmacology (Berl). 2009 Jan;202(1-3):505-19. doi: 10.1007/s00213-008-1250-4. PMID: 18604598; PMCID: PMC2634830. ↥
Newman LA, Darling J, McGaughy J (2008): Atomoxetine reverses attentional deficits produced by noradrenergic deafferentation of medial prefrontal cortex. Psychopharmacology (Berl). 2008 Sep;200(1):39-50. doi: 10.1007/s00213-008-1097-8. PMID: 18568443; PMCID: PMC10719959. ↥
Bradshaw SE, Agster KL, Waterhouse BD, McGaughy JA (2016): Age-related changes in prefrontal norepinephrine transporter density: The basis for improved cognitive flexibility after low doses of atomoxetine in adolescent rats. Brain Res. 2016 Jun 15;1641(Pt B):245-57. doi: 10.1016/j.brainres.2016.01.001. PMID: 26774596; PMCID: PMC4879050. ↥
Middleton HC, Sharma A, Agouzoul D, Sahakian BJ, Robbins TW (1999): Idazoxan potentiates rather than antagonizes some of the cognitive effects of clonidine. Psychopharmacology (Berl). 1999 Aug;145(4):401-11. doi: 10.1007/s002130051074. PMID: 10460317. ↥
Müller U, Clark L, Lam ML, Moore RM, Murphy CL, Richmond NK, Sandhu RS, Wilkins IA, Menon DK, Sahakian BJ, Robbins TW (2005): Lack of effects of guanfacine on executive and memory functions in healthy male volunteers. Psychopharmacology (Berl). 2005 Oct;182(2):205-13. doi: 10.1007/s00213-005-0078-4. PMID: 16078088. ↥
Alexander JK, Hillier A, Smith RM, Tivarus ME, Beversdorf DQ (2007): Beta-adrenergic modulation of cognitive flexibility during stress. J Cogn Neurosci. 2007 Mar;19(3):468-78. doi: 10.1162/jocn.2007.19.3.468. PMID: 17335395. ↥