Cannabinoid reuptake and degradation
1. Reuptake by cannabinoid transporters
1.1. Cannabinoid transporter
The cannabinoid membrane transporter takes cannabinoids back into the nerve cell. The endocannabinoids then hydrolyze immediately.1
1.2. Cannabinoid reuptake inhibitors
Cannabinoid reuptake inhibitors are among others:
- AM404234
- active metabolite of paracetamol
- AM-404 such as paracetamol prevent dyskinesia triggered by dopamine D2 receptor antagonists (antipsychotics such as haloperidol)5
- binds to Transient Receptor Potential Vanilloid 1 (TRPV1)5
- prevented the haloperidol-induced decrease in c-Fos+preproenkephalin+striatal neurons in wild-type mice, but not in TRPV1-deficient mice5
- has an analgesic effect via 5-HT1A receptors6
- reduces alcohol self-administration in mice78
- had an antidepressant, anticompulsive effect and enhanced the effect of fluoxetine910
- binds to TRPV1 via the vanilloid binding site; TRPV1 is the main receptor for AM404 in DRG neurons11
- pain-relieving
- anxiety-relieving12
- active metabolite of paracetamol
- AM11721314
- Guinean15
- Linvanil3
- LY-21832401617
- O-2093, O-2247, O-2248, O-3246, O-326218
- OMDM-2
- reduced social isolation19
- Olvanil20
- RX-055
- SYT-510
- UCM-707 (N-(3-furylmethyl)eicosa-5,8,11,14-tetraenamide)21
- VDM-1122
- WOBE4372324
- OMDM-12526
2. Cannabinoid degradation
2.1. Cannabinoid degradation enzymes
Endocannabinoids are primarily degraded by FAAH, FLAT and MAGL.
2.1.1. FAAH
FAAH (fatty-acid amide hydrolase 1, N-arachidonoylethanolamine amidohydrolase, fatty acid amidohydrolase, also oleamide hydrolase, anandamide amidohydrolase) degrades:
- AEA2728 on arachidonic acid and ethanolamide2930
- AEA degradation by FAAH predominantly in the postsynapse31
- 2-AG28
- this is contradicted by the fact that the FAAH inhibitor URB597 only increased AEA in the hypothalamus, but not 2-AG32
- Oleamide (cis-9,10-octadecenoamide), a sleep-inducing lipid33
- unclear whether oleamide interacts with FAAH34
- N-acyltaurine35
- N-acylethanolamine
- N-oleoylethanolamine
- N-palmitoylethanolamine
The degradation of AEA by FAAH appears either to serve other pathways or to be significantly stronger than the degradation by reuptake. In any case, FAAH inhibitors show different or stronger effects than AEA reuptake inhibitors.21
In Alzheimer’s disease, FAAH appears to be increased overall36 but decreased in PFC29.
2.1.2. MAGL
MAGL, monoacylglycerol lipase29 metabolizes 2-AG to arachidonic acid and glycerol.
Degradation of 2-AG by MAGL in the presynapse.31
2-AG is 85 % degraded by MAGL and 15 % by ABHD6 and ABHD12.37
2.1.3. FLAT
FLAT (FAAH-like anandamide transporter) is a truncated and catalytically inactive(r) variant of FAAH.38
- binds anandamide with low micromolar affinity25
- facilitates its transfer into the cells25
- is blocked by the anandamide transporter inhibitors AM404 and OMDM-125
- the phthalazine derivative ARN272 is a competitive antagonist of the interaction of anandamide with FLAT and prevented the uptake of anandamide into cells25
- pharmacological inhibition of FLAT enhanced AEA signaling and its antinociceptive effect38
- not yet detected in any tissue38
- is primarily localized at intracellular membranes38
- shows no contact with the plasma membrane38
- Enhancement of AEA uptake therefore due to enzymatic action rather than transport activity
2.2. Cannabinoid enzyme degradation inhibitors
Inhibition of the degradation of cannabinoids is also of particular pharmacological interest.
A degradation inhibitor is
2.2.1. FAAH inhibitors
Synthetic FAAH inhibitors showed massive to fatal side effects, especially with long-term use, such as impairment of cognitive and motor functions and increased risk of psychosis40 (however, we were unable to verify the sources cited). Testing of the synthetic FAAH inhibitor BIA 10-2474 in humans showed no side effects with a single dose in 86 subjects. In a subsequent phase of daily oral administration, however, one subject was hospitalized after a few days and died shortly thereafter due to brain death; 4 of 5 other subjects suffered severe bleeding and dying tissue in the brain with presumably irreversible impairments.41
Even if this is a very rare accident in a phase 1 trial, it should be a clear warning against carrying out self-experiments with untested substances.
Biological FAAH should not have these side effects.40
Organophosphates inhibit FAAH, which degrades the CB1R and CB2R agonist anandamide (AEA), leading to ADHD symptoms in mice. Excessive FAAH inhibition increases AEA to such an extent that it has a neurotoxic effect.42
Other FAAH inhibitors:43
- biological FAAH inhibitors40
- Biochanin A (flavonoid in red clover; Trifolium pretense)
- Daidzein (flavonoid in red clover; Trifolium pretense)
- Formononetin (flavonoid in red clover; Trifolium pretense)
- Genistein (flavonoid in red clover; Trifolium pretense)
- Guineensine (alkaloid in monk’s pepper; Piper longum)
- Kaempferol4445 (broccoli, Brussels sprouts, tomatoes, grapes, green tea, delphinium, witch hazel, grapefruit, red grapes, ginkgo, grapefruits, passionflower, daphne, apples, potatoes, onions, pumpkin, cucumber, lettuce, green beans, peach, Blackberries, raspberries, spinach, hops, aloe vera, Coccinia grandis, Cuscuta chinensis, Euphorbia pekinensis, Glycine max, Hypericum perforatum, Pinus sylvestris, Moringa oleifera, rosemary, Sambucus nigra, Toona sinensis, holly, endive, spice lily)
- (N-BenzylOctadeca-9Z, 12Z-dienamide) (Maca, Lepidium meyenii)
- N-Benzylstearamide (Maca, Lepidium meyenii)
- Macamide (Maca, Lepidium meyenii)
- Myristicin (nutmeg, aniseed, parsley, dill),
- Pelargonidin (all berries, plums, pomegranates)
- synthetic FAAH inhibitors40
- AA5HT (N-[2-(5-Hydroxy-1H-indol-3-yl)ethyl]-5,8,11,14-eicosatetraenamid)46
- BIA 10-247441
- Severe side effects: acute and rapidly progressive neurological symptoms, such as headache and impaired consciousness. Brain death in one patient, presumably due to overdose47
- JNJ-42165279
- JZL195 (also MAGL inhibitor)
- LY-2183240
- PF-0445784548
- URB597 (KDS-4103, Cyclohexyl carbamic acid 3’-carbamoyl-biphenyl-3-yl ester)21
- unknown whether natural or synthetic FAAH inhibitor
- 4-Nonylphenylboronic acid
- (9Z)-1-(5-pyridin-2-yl-1,3,4-oxadiazol-2-yl)octadec-9-en-1-one50
- MK-440951
- N-arachidonoyl serotonin47
- Piperazine carboxamides are inhibitors of FAAH and MAGL52
- Piperazine carbamates are inhibitors of FAAH and MAGL52
- Piperidine carboxamides are inhibitors of FAAH and MAGL52
- Piperidine carbamates are inhibitors of FAAH and MAGL52
- PF-622 (N-phenyl-4-(quinolin-2-ylmethyl)piperazine-1-carboxamide)53
- PF-750 (N-phenyl-4-(quinolin-3-ylmethyl)piperidine-1-carboxamide)53
- PF384554
- SA-57 (also MAGL inhibitor)55
- ST40705647
- SSR41129847
- URB59747
- URB69447
FAAH inhibitors also appear to act as TRPV1 agonists.57
2.2.2. MAGL inhibitors
MAGL breaks down 2-AG. MAGL is inhibited by:
2.2.3. FLAT inhibitors
Guineensin is said to act as a FLAT inhibitor.50
2.3. Further decomposition paths
Endocannabinoids can be broken down by oxidation of:5960
- Cyclooxygenase-2
- Lipoxygenases
- Cytochrome P450
- CYP2J260
Dias-de Freitas, Pimenta, Soares, Gonzaga, Vaz-Matos, Prior (2022): The role of cannabinoids in neurodevelopmental disorders of children and adolescents. Rev Neurol. 2022 Oct 1;75(7):189-197. Spanish, English. doi: 10.33588/rn.7507.2022123. PMID: 36169325. spanish ↥
Costa B, Siniscalco D, Trovato AE, Comelli F, Sotgiu ML, Colleoni M, Maione S, Rossi F, Giagnoni G (2006): AM404, an inhibitor of anandamide uptake, prevents pain behaviour and modulates cytokine and apoptotic pathways in a rat model of neuropathic pain. Br J Pharmacol. 2006 Aug;148(7):1022-32. doi: 10.1038/sj.bjp.0706798. PMID: 16770320; PMCID: PMC1751928. ↥
Bisogno T, MacCarrone M, De Petrocellis L, Jarrahian A, Finazzi-Agrò A, Hillard C, Di Marzo V (2001): The uptake by cells of 2-arachidonoylglycerol, an endogenous agonist of cannabinoid receptors. Eur J Biochem. 2001 Apr;268(7):1982-9. doi: 10.1046/j.1432-1327.2001.02072.x. PMID: 11277920. ↥ ↥
Giuffrida A, Rodriguez de Fonseca F, Nava F, Loubet-Lescoulié P, Piomelli D (2000): Elevated circulating levels of anandamide after administration of the transport inhibitor, AM404. Eur J Pharmacol. 2000 Nov 17;408(2):161-8. doi: 10.1016/s0014-2999(00)00786-x. PMID: 11080522. ↥
Nagaoka K, Nagashima T, Asaoka N, Yamamoto H, Toda C, Kayanuma G, Siswanto S, Funahashi Y, Kuroda K, Kaibuchi K, Mori Y, Nagayasu K, Shirakawa H, Kaneko S (2021): Striatal TRPV1 activation by acetaminophen ameliorates dopamine D2 receptor antagonist-induced orofacial dyskinesia. JCI Insight. 2021 May 24;6(10):e145632. doi: 10.1172/jci.insight.145632. PMID: 33857021; PMCID: PMC8262333. ↥ ↥ ↥
Nakamura S, Nonaka T, Komatsu S, Yamada T, Yamamoto T (2022): Oral acetaminophen-induced spinal 5-hydroxytriyptamine release produces analgesic effects in the rat formalin test. Biomed Pharmacother. 2022 Feb;146:112578. doi: 10.1016/j.biopha.2021.112578. PMID: 34959121. ↥
Gianessi CA, Groman SM, Thompson SL, Jiang M, van der Stelt M, Taylor JR (2020): Endocannabinoid contributions to alcohol habits and motivation: Relevance to treatment. Addict Biol. 2020 May;25(3):e12768. doi: 10.1111/adb.12768. PMID: 31056846; PMCID: PMC7790504. ↥ ↥ ↥
Cippitelli A, Bilbao A, Gorriti MA, Navarro M, Massi M, Piomelli D, Ciccocioppo R, Rodríguez de Fonseca F (2007): The anandamide transport inhibitor AM404 reduces ethanol self-administration. Eur J Neurosci. 2007 Jul;26(2):476-86. doi: 10.1111/j.1460-9568.2007.05665.x. PMID: 17650118. ↥
Manna SS, Umathe SN (2015): Paracetamol potentiates the antidepressant-like and anticompulsive-like effects of fluoxetine. Behav Pharmacol. 2015 Apr;26(3):268-81. doi: 10.1097/FBP.0000000000000104. PMID: 25340977. ↥
Umathe SN, Manna SS, Jain NS (2011): Involvement of endocannabinoids in antidepressant and anti-compulsive effect of fluoxetine in mice. Behav Brain Res. 2011 Sep 30;223(1):125-34. doi: 10.1016/j.bbr.2011.04.031. PMID: 21549765. ↥
Stueber T, Meyer S, Jangra A, Hage A, Eberhardt M, Leffler A (2018): Activation of the capsaicin-receptor TRPV1 by the acetaminophen metabolite N-arachidonoylaminophenol results in cytotoxicity. Life Sci. 2018 Feb 1;194:67-74. doi: 10.1016/j.lfs.2017.12.024. PMID: 29273526. ↥
Bortolato M, Campolongo P, Mangieri RA, Scattoni ML, Frau R, Trezza V, La Rana G, Russo R, Calignano A, Gessa GL, Cuomo V, Piomelli D (2006): Anxiolytic-like properties of the anandamide transport inhibitor AM404. Neuropsychopharmacology. 2006 Dec;31(12):2652-9. doi: 10.1038/sj.npp.1301061. PMID: 16541083. ↥
Marzęda P, Wróblewska-Łuczka P, Florek-Łuszczki M, Góralczyk A, Łuszczki JJ (2024): AM1172 (a hydrolysis-resistant endocannabinoid analog that inhibits anandamide cellular uptake) reduces the viability of the various melanoma cells, but it exerts significant cytotoxic effects on healthy cells: an in vitro study based on isobolographic analysis. Pharmacol Rep. 2024 Feb;76(1):154-170. doi: 10.1007/s43440-023-00557-2. PMID: 38019413; PMCID: PMC10830817. ↥
Fegley D, Kathuria S, Mercier R, Li C, Goutopoulos A, Makriyannis A, Piomelli D (2004): Anandamide transport is independent of fatty-acid amide hydrolase activity and is blocked by the hydrolysis-resistant inhibitor AM1172. Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8756-61. doi: 10.1073/pnas.0400997101. PMID: 15138300; PMCID: PMC423268. ↥
Nicolussi S, Viveros-Paredes JM, Gachet MS, Rau M, Flores-Soto ME, Blunder M, Gertsch J (2014): Guineensine is a novel inhibitor of endocannabinoid uptake showing cannabimimetic behavioral effects in BALB/c mice. Pharmacol Res. 2014 Feb;80:52-65. doi: 10.1016/j.phrs.2013.12.010. PMID: 24412246. ↥
Sun L, Tai L, Qiu Q, Mitchell R, Fleetwood-Walker S, Joosten EA, Cheung CW (2017): Endocannabinoid activation of CB1 receptors contributes to long-lasting reversal of neuropathic pain by repetitive spinal cord stimulation. Eur J Pain. 2017 May;21(5):804-814. doi: 10.1002/ejp.983. PMID: 28107590. ↥
Moore SA, Nomikos GG, Dickason-Chesterfield AK, Schober DA, Schaus JM, Ying BP, Xu YC, Phebus L, Simmons RM, Li D, Iyengar S, Felder CC (2005): Identification of a high-affinity binding site involved in the transport of endocannabinoids. Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17852-7. doi: 10.1073/pnas.0507470102. PMID: 16314570; PMCID: PMC1295594. ↥
Ligresti A, Cascio MG, Pryce G, Kulasegram S, Beletskaya I, De Petrocellis L, Saha B, Mahadevan A, Visintin C, Wiley JL, Baker D, Martin BR, Razdan RK, Di Marzo V (2006): New potent and selective inhibitors of anandamide reuptake with antispastic activity in a mouse model of multiple sclerosis. Br J Pharmacol. 2006 Jan;147(1):83-91. doi: 10.1038/sj.bjp.0706418. PMID: 16284631; PMCID: PMC1615845. ↥
Seillier A, Giuffrida A (2018): The cannabinoid transporter inhibitor OMDM-2 reduces social interaction: Further evidence for transporter-mediated endocannabinoid release. Neuropharmacology. 2018 Mar 1;130:1-9. doi: 10.1016/j.neuropharm.2017.11.032. PMID: 29169961. ↥
Di Marzo V, Bisogno T, Melck D, Ross R, Brockie H, Stevenson L, Pertwee R, De Petrocellis L (1998): Interactions between synthetic vanilloids and the endogenous cannabinoid system. FEBS Lett. 1998 Oct 9;436(3):449-54. doi: 10.1016/s0014-5793(98)01175-2. PMID: 9801167. ↥
Solinas M, Tanda G, Justinova Z, Wertheim CE, Yasar S, Piomelli D, Vadivel SK, Makriyannis A, Goldberg SR (2007): The endogenous cannabinoid anandamide produces delta-9-tetrahydrocannabinol-like discriminative and neurochemical effects that are enhanced by inhibition of fatty acid amide hydrolase but not by inhibition of anandamide transport. J Pharmacol Exp Ther. 2007 Apr;321(1):370-80. doi: 10.1124/jpet.106.114124. PMID: 17210800. ↥ ↥ ↥ ↥
Vandevoorde S, Fowler CJ (2005): Inhibition of fatty acid amide hydrolase and monoacylglycerol lipase by the anandamide uptake inhibitor VDM11: evidence that VDM11 acts as an FAAH substrate. Br J Pharmacol. 2005 Aug;145(7):885-93. doi: 10.1038/sj.bjp.0706253. PMID: 15895107; PMCID: PMC1576210. ↥ ↥
Gagestein B, Stevens AF, Fazio D, Florea BI, van der Wel T, Bakker AT, Fezza F, Dulk HD, Overkleeft HS, Maccarrone M, van der Stelt M (2022): Chemical Proteomics Reveals Off-Targets of the Anandamide Reuptake Inhibitor WOBE437. ACS Chem Biol. 2022 May 20;17(5):1174-1183. doi: 10.1021/acschembio.2c00122. PMID: 35482948; PMCID: PMC9127799. ↥
Reynoso-Moreno I, Chicca A, Flores-Soto ME, Viveros-Paredes JM, Gertsch J (2018): The Endocannabinoid Reuptake Inhibitor WOBE437 Is Orally Bioavailable and Exerts Indirect Polypharmacological Effects via Different Endocannabinoid Receptors. Front Mol Neurosci. 2018 May 28;11:180. doi: 10.3389/fnmol.2018.00180. PMID: 29910713; PMCID: PMC5992379. ↥
Fu J, Bottegoni G, Sasso O, Bertorelli R, Rocchia W, Masetti M, Guijarro A, Lodola A, Armirotti A, Garau G, Bandiera T, Reggiani A, Mor M, Cavalli A, Piomelli D (2011): A catalytically silent FAAH-1 variant drives anandamide transport in neurons. Nat Neurosci. 2011 Nov 20;15(1):64-9. doi: 10.1038/nn.2986. Erratum in: Nat Neurosci. 2013 Dec;16(12):1907. PMID: 22101642; PMCID: PMC3245783. ↥ ↥ ↥ ↥ ↥
Beltramo M, Piomelli D (1999): Anandamide transport inhibition by the vanilloid agonist olvanil. Eur J Pharmacol. 1999 Jan 1;364(1):75-8. doi: 10.1016/s0014-2999(98)00821-8. PMID: 9920187. ↥
Centonze D, Battistini L, Maccarrone M (2008): The endocannabinoid system in peripheral lymphocytes as a mirror of neuroinflammatory diseases. Curr Pharm Des. 2008;14(23):2370-42. doi: 10.2174/138161208785740018. PMID: 18781987. REVIEW ↥
Ueda N, Puffenbarger RA, Yamamoto S, Deutsch DG (2000): The fatty acid amide hydrolase (FAAH). Chem Phys Lipids. 2000 Nov;108(1-2):107-21. doi: 10.1016/s0009-3084(00)00190-0. PMID: 11106785. REVIEW ↥ ↥
Murillo-Rodriguez E, Pastrana-Trejo JC, Salas-Crisóstomo M, de-la-Cruz M (2017): The Endocannabinoid System Modulating Levels of Consciousness, Emotions and Likely Dream Contents. CNS Neurol Disord Drug Targets. 2017;16(4):370-379. doi: 10.2174/1871527316666170223161908. PMID: 28240187. REVIEW ↥ ↥ ↥
Pertwee RG (2006): The pharmacology of cannabinoid receptors and their ligands: an overview. Int J Obes (Lond). 2006 Apr;30 Suppl 1:S13-8. doi: 10.1038/sj.ijo.0803272. PMID: 16570099. REVIEW ↥
Coelho AA, Lima-Bastos S, Gobira PH, Lisboa SF (2023): Endocannabinoid signaling and epigenetics modifications in the neurobiology of stress-related disorders. Neuronal Signal. 2023 Jul 25;7(2):NS20220034. doi: 10.1042/NS20220034. PMID: 37520658; PMCID: PMC10372471. REVIEW ↥ ↥
Béquet F, Uzabiaga F, Desbazeille M, Ludwiczak P, Maftouh M, Picard C, Scatton B, Le Fur G (2007): CB1 receptor-mediated control of the release of endocannabinoids (as assessed by microdialysis coupled with LC/MS) in the rat hypothalamus. Eur J Neurosci. 2007 Dec;26(12):3458-64. doi: 10.1111/j.1460-9568.2007.05900.x. PMID: 18052990. ↥ ↥
Cravatt BF, Prospero-Garcia O, Siuzdak G, Gilula NB, Henriksen SJ, Boger DL, Lerner RA (1995): Chemical characterization of a family of brain lipids that induce sleep. Science. 1995 Jun 9;268(5216):1506-9. doi: 10.1126/science.7770779. PMID: 7770779. ↥
Lees G, Dougalis A (2004): Differential effects of the sleep-inducing lipid oleamide and cannabinoids on the induction of long-term potentiation in the CA1 neurons of the rat hippocampus in vitro. Brain Res. 2004 Jan 30;997(1):1-14. doi: 10.1016/j.brainres.2003.10.019. PMID: 14715144. ↥
Saghatelian A, McKinney MK, Bandell M, Patapoutian A, Cravatt BF (2006): A FAAH-regulated class of N-acyl taurines that activates TRP ion channels. Biochemistry. 2006 Aug 1;45(30):9007-15. doi: 10.1021/bi0608008. PMID: 16866345. ↥
D’Addario C, Di Francesco A, Arosio B, Gussago C, Dell’Osso B, Bari M, Galimberti D, Scarpini E, Altamura AC, Mari D, Maccarrone M (2012): Epigenetic regulation of fatty acid amide hydrolase in Alzheimer disease. PLoS One. 2012;7(6):e39186. doi: 10.1371/journal.pone.0039186. PMID: 22720070; PMCID: PMC3373611. ↥
Blankman JL, Simon GM, Cravatt BF (2007): A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol. 2007 Dec;14(12):1347-56. doi: 10.1016/j.chembiol.2007.11.006. PMID: 18096503; PMCID: PMC2692834. ↥
Leung K, Elmes MW, Glaser ST, Deutsch DG, Kaczocha M (2013): Role of FAAH-like anandamide transporter in anandamide inactivation. PLoS One. 2013 Nov 4;8(11):e79355. doi: 10.1371/journal.pone.0079355. PMID: 24223930; PMCID: PMC3817039. ↥ ↥ ↥ ↥ ↥
Rutkowska M, Jamontt J, Gliniak H (2006): Effects of cannabinoids on the anxiety-like response in mice. Pharmacol Rep. 2006 Mar-Apr;58(2):200-6. PMID: 16702621. ↥
Dawson D A, Persad C P (2021): Targeting the Endocannabinoid System in the Treatment of ADHD. Genet Mol Med, 3(1), 1-7. ↥ ↥ ↥ ↥
Kaur R, Sidhu P, Singh S (2016): What failed BIA 10-2474 Phase I clinical trial? Global speculations and recommendations for future Phase I trials. J Pharmacol Pharmacother. 2016 Jul-Sep;7(3):120-6. doi: 10.4103/0976-500X.189661. PMID: 27651707; PMCID: PMC5020770. ↥ ↥
Terajima T, Inoue H, Shimomura K, Iwasaki F, Sasaki A, Ito Y, Kamijima M, Tomizawa M (2023): Organophosphate agent action at the fatty acid amide hydrolase enhancing anandamide-induced apoptosis in NG108-15 cells. J Toxicol Sci. 2023;48(7):421-428. doi: 10.2131/jts.48.421. PMID: 37394655. ↥
Navarrete F, García-Gutiérrez MS, Jurado-Barba R, Rubio G, Gasparyan A, Austrich-Olivares A, Manzanares J (2020): Endocannabinoid System Components as Potential Biomarkers in Psychiatry. Front Psychiatry. 2020 Apr 27;11:315. doi: 10.3389/fpsyt.2020.00315. PMID: 32395111; PMCID: PMC7197485. REVIEW ↥ ↥
Ahmad H, Rauf K, Zada W, McCarthy M, Abbas G, Anwar F, Shah AJ (2020): Kaempferol Facilitated Extinction Learning in Contextual Fear Conditioned Rats via Inhibition of Fatty-Acid Amide Hydrolase. Molecules. 2020 Oct 14;25(20):4683. doi: 10.3390/molecules25204683. PMID: 33066366; PMCID: PMC7587337. ↥
Thors L, Belghiti M, Fowler CJ (2008): Inhibition of fatty acid amide hydrolase by kaempferol and related naturally occurring flavonoids. Br J Pharmacol. 2008 Sep;155(2):244-52. doi: 10.1038/bjp.2008.237. PMID: 18552875; PMCID: PMC2538700. ↥
El Khoury MA, Gorgievski V, Moutsimilli L, Giros B, Tzavara ET (2012): Interactions between the cannabinoid and dopaminergic systems: evidence from animal studies. Prog Neuropsychopharmacol Biol Psychiatry. 2012 Jul 2;38(1):36-50. doi: 10.1016/j.pnpbp.2011.12.005. PMID: 22300746. REVIEW ↥
Ren SY, Wang ZZ, Zhang Y, Chen NH (2020): Potential application of endocannabinoid system agents in neuropsychiatric and neurodegenerative diseases-focusing on FAAH/MAGL inhibitors. Acta Pharmacol Sin. 2020 Oct;41(10):1263-1271. doi: 10.1038/s41401-020-0385-7. PMID: 32203086; PMCID: PMC7608191. REVIEW ↥ ↥ ↥ ↥ ↥ ↥ ↥
Chen C, Wang W, Poklis JL, Li PL, Lichtman AH, Gewirtz DA, Li N (2024): Mitigation of cisplatin-induced acute kidney injury through oral administration of FAAH Inhibitor PF-04457845. J Pharmacol Exp Ther. 2024 Aug 21:JPET-AR-2024-002282. doi: 10.1124/jpet.124.002282. PMID: 39168649. ↥
Larauche M, Mulak A, Ha C, Million M, Arnett S, Germano P, Pearson JP, Currie MG, Taché Y (2024): FAAH inhibitor URB597 shows anti-hyperalgesic action and increases brain and intestinal tissues fatty acid amides in a model of CRF1 agonist mediated visceral hypersensitivity in male rats. Neurogastroenterol Motil. 2024 Dec;36(12):e14927. doi: 10.1111/nmo.14927. PMID: 39344695. ↥
Tou WI, Chang SS, Lee CC, Chen CY (2013): Drug design for neuropathic pain regulation from traditional Chinese medicine. Sci Rep. 2013;3:844. doi: 10.1038/srep00844. PMID: 23378894; PMCID: PMC3558695. ↥ ↥
Chobanian HR, Guo Y, Liu P, Chioda MD, Fung S, Lanza TJ, Chang L, Bakshi RK, Dellureficio JP, Hong Q, McLaughlin M, Belyk KM, Krska SW, Makarewicz AK, Martel EJ, Leone JF, Frey L, Karanam B, Madeira M, Alvaro R, Shuman J, Salituro G, Terebetski JL, Jochnowitz N, Mistry S, McGowan E, Hajdu R, Rosenbach M, Abbadie C, Alexander JP, Shiao LL, Sullivan KM, Nargund RP, Wyvratt MJ, Lin LS, DeVita RJ (2014): Discovery of MK-4409, a Novel Oxazole FAAH Inhibitor for the Treatment of Inflammatory and Neuropathic Pain. ACS Med Chem Lett. 2014 Apr 10;5(6):717-21. doi: 10.1021/ml5001239. PMID: 24944750; PMCID: PMC4060928. ↥
Korhonen J, Kuusisto A, van Bruchem J, Patel JZ, Laitinen T, Navia-Paldanius D, Laitinen JT, Savinainen JR, Parkkari T, Nevalainen TJ (2014): Piperazine and piperidine carboxamides and carbamates as inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). Bioorg Med Chem. 2014 Dec 1;22(23):6694-6705. doi: 10.1016/j.bmc.2014.09.012. PMID: 25282655. ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥
Ahn K, Johnson DS, Fitzgerald LR, Liimatta M, Arendse A, Stevenson T, Lund ET, Nugent RA, Nomanbhoy TK, Alexander JP, Cravatt BF (2007): Novel mechanistic class of fatty acid amide hydrolase inhibitors with remarkable selectivity. Biochemistry. 2007 Nov 13;46(45):13019-30. doi: 10.1021/bi701378g. PMID: 17949010. ↥ ↥
de Ceglia M, Romano A, Micioni Di Bonaventura MV, Gavito A, Botticelli L, Micioni Di Bonaventura E, Friuli M, Cifani C, Rodríguez de Fonseca F, Gaetani S (2024): Cafeteria Diet Abstinence Induces Depressive Behavior and Disrupts Endocannabinoid Signaling in Dopaminergic Areas: A Preclinical Study. Curr Neuropharmacol. 2024 Nov 22. doi: 10.2174/1570159X23666241107160840. PMID: 39582223. ↥
Owens RA, Mustafa MA, Ignatowska-Jankowska BM, Damaj MI, Beardsley PM, Wiley JL, Niphakis MJ, Cravatt BF, Lichtman AH (2017): Inhibition of the endocannabinoid-regulating enzyme monoacylglycerol lipase elicits a CB1 receptor-mediated discriminative stimulus in mice. Neuropharmacology. 2017 Oct;125:80-86. doi: 10.1016/j.neuropharm.2017.06.032. PMID: 28673548; PMCID: PMC5771234. ↥
Marco EM, Rapino C, Caprioli A, Borsini F, Laviola G, Maccarrone M (2015): Potential Therapeutic Value of a Novel FAAH Inhibitor for the Treatment of Anxiety. PLoS One. 2015 Sep 11;10(9):e0137034. doi: 10.1371/journal.pone.0137034. PMID: 26360704; PMCID: PMC4567375. ↥
Morgese MG, Cassano T, Cuomo V, Giuffrida A (2007): Anti-dyskinetic effects of cannabinoids in a rat model of Parkinson’s disease: role of CB(1) and TRPV1 receptors. Exp Neurol. 2007 Nov;208(1):110-9. doi: 10.1016/j.expneurol.2007.07.021. PMID: 17900568; PMCID: PMC2128772. ↥
Fontenot J, Loetz EC, Ishiki M, Bland ST (2018): Monoacylglycerol lipase inhibition alters social behavior in male and female rats after post-weaning social isolation. Behav Brain Res. 2018 Apr 2;341:146-153. doi: 10.1016/j.bbr.2017.12.038. PMID: 29292159; PMCID: PMC6034682. ↥
Biernacki M, Skrzydlewska E (2016): Metabolism of endocannabinoids. Postepy Hig Med Dosw (Online). 2016 Aug 11;70(0):830-43. doi: 10.5604/17322693.1213898. PMID: 27516570. REVIEW ↥
Zelasko S, Arnold WR, Das A (2015): Endocannabinoid metabolism by cytochrome P450 monooxygenases. Prostaglandins Other Lipid Mediat. 2015 Jan-Mar;116-117:112-23. doi: 10.1016/j.prostaglandins.2014.11.002. PMID: 25461979. REVIEW ↥ ↥