Header Image
Cannabinoid receptors

Sitemap

Cannabinoid receptors

Endocannabinoids bind to cannabinoid receptors as neurotransmitters:1
Unlike other neurotransmitters, endocannabinoids do not act from the presynapse to the postsynapse, but are released from the postsynapse of the downstream neuron and bind to CB1R on presynaptic upstream GABAergic and glutamatergic2 neurons. The presynaptic neuron then reduces or stops glutamate release, which reduces excitation. However, if the activation of the cannabinoid receptors lasts longer and affects a large number of neurons (e.g. during drug intake), this also terminates GABA signaling.2 As GABA has a dampening effect, the activation level rises again and the excitatory processes increase again.34

There are two cannabinoid receptors, CB1R and CB2R.5 CB3R has occasionally been mentioned as a third cannabinoid receptor, but this is unlikely to be the case.

1. CB1 receptor (CB1R)

The psychoactive effects of cannabis in the brain are mediated by the binding of its main component ∆9-tetrahydrocannabinol (THC) to CB1R.6 Selective CB1R antagonists trigger a withdrawal syndrome in cannabinoid-dependent animals.678

CBRs are G protein-coupled receptors (GPCRs) and are primarily coupled to Gi/o proteins. They inhibit adenylyl cyclase and promote mitogen-activated protein kinase (MAPK). CB1R is also coupled to specific ion channels via Gi/o proteins and acts directly on Gs proteins, which activate adelylate cyclase.9 CB1R also mediates autapic LTD via G(q) proteins.10

1.1. CB1R Occurrence

CB1Rs increase continuously during adolescence, reaching a maximum during puberty. After that, the number of CB1Rs decreases again.11123

Unlike CB2R, which occurs pre- and postsynaptically, CB1R is only found presynaptically.13

The CB1R (cannabinoid 1 receptor) is present in many organs, sometimes in low concentrations.
It is one of the most common receptors in the brain and the most abundant G protein-coupled receptor there.14
The CB1R finds itself:615

  • in the brain in:

    • Basal ganglia
      • Nucleus accumbens161718
        • at presynaptic glutamatergic terminals16
          • from the PFC, the basolateral amygdala and the ventral hippocampus19 but not from the thalamus
        • on inhibitory GABAergic terminals of FSIs, but not on LTSIs, MSNs or CINs1619
      • Dorsal striatum1618 and ventral20
        • on FSI and MSN collaterals and to a lesser extent on CIN and LTSI16
        • on GABAergic interneurons20
        • in a large part of the large non-spiny cholinergic interneurons20
        • on striatonigral neurons expressing substance P and dopamine D1 receptors21, which also preferentially express M4 muscarinic receptors20
        • on striatopallidal neurons
          • that express enkephalin and dopamine D2 receptors21
          • that preferentially express M1 muscarinic receptors20
        • presynaptic at glutamatergic terminals of afferent corticostriatal (VGLUT1-positive) and thalamostriatal (VGLUT2-positive) axons22
      • in mouse dorsal striatum, TH immunogold particles were found in less than one percent of axonal profiles with CB1R immunoperoxidase labeling, indicating that CB1R expression in axon terminals of nigrostriatal dopaminergic neurons is very low23
    • Globus pallidus24
    • corticolimbic regions (involved in cognition, memory and motivation)
      • PFC24
        • particularly in layers II, III and V and to a lesser extent in layer VI2520
        • In all cortical layers predominantly in GABAergic interneurons
          • namely in26
            • Cholecystokinin-positive
            • vasoactive intestinal peptide-positive
            • Somatostatin-positive
          • CB1R on GABAergic neurons promote behavioral inhibition27
          • CB1R on GABAergic terminals are more frequent than on glutamatergic terminals28
        • To a lesser extent also in glutamatergic terminals and pyramidal neurons26
          • CB1R expressed in cortical glutamatergic neurons promote novelty seeking27
        • in noradrenergic terminals29
        • CB1R in the vMPFC regulate the baroreflex30
    • Caudatus putamen
      • CB1R in caudate and putamen form heteromers with adenosine A2A receptors. CB1R-mediated motor inhibition in the striatum is completely dependent on the activation of A2AR (in the form of CB1R-ADA2 heteromers) and is abolished by A2AR antagonists. The inhibitory effect of CB1R agonists on hyperlocomotion induced by the D2 agonist quinpirole was blocked by A2AR antagonists MSX-3 as well as by the CB1R antagonist rimonabant31
    • Midbrain (mesencephalon)
      • Nucleus entopeduncularis32
      • Substantia nigra32
      • VTA17
      • periaqueductal gray (PAG, involved in pain processing)33
    • Spinal cord32
    • limbic system (associated with stress reactions)
      • Hippocampus32
        • paraventricular nucleus
        • especially on cholecystokinin-positive GABAergic interneurons34
      • Amygdala33
        • central amygdala35
    • Cerebellum (cerebellum)3236
    • Diencephalon
      • Thalamus33
      • Hypothalamus33
    • Pyriform cortex (primary olfactory cortex)18
    • Brain stem
      • rostral ventromedial medulla (RVM, involved in pain processing)33
      • Pons (in small quantities)
    • in oligodendrocytes in the white matter of certain brain regions3738 at least during brain development:39
      • Corpus callosum, commissura anterior (commissura rostralis), stria terminalis, fornix, areas of the white matter of the brain stem
  • peripherally in lower density in nerve and other tissues involved in the regulation of emotions, stress and responsiveness:40

    • Axon terminals
    • Glial cells
    • Reproductive system (uterus, ovary, testicles, prostate)
    • some glandular systems (e.g. adrenal gland)
    • Adipose tissue
    • Hearts
    • Liver
    • Lung
    • Bone marrow
    • Thymus
    • Microcirculation
  • especially on axon terminals.41 CB1Rs are subject to a permanent cycle of endocytosis and recycling (only) in the somatodendritic compartment. As a result, CB1Rs are continuously removed from the plasma membrane by endocytosis in the somatodendritic compartment, but not in the axons. As a result, this leads to a disproportionate occurrence of CB1Rs on axons.4243

    • CB1R is found more frequently on GABAergic than on glutamatergic presynaptic terminals4435 28 and on neurons expressing DRD145
    • Activation by endocannabinoids, which are synthesized and released in postsynaptic terminals in response to postsynaptic depolarization4647
    • this underlines their importance for inhibitory and excitatory regulation of the brain48
  • on membranes and mitochondria of astrocytes, where it is involved in the regulation of neuronal/synaptic function via crosstalk between astrocytes and neurons49

CB1R form heteromers with:50

  • Dopamine receptors
    • postsynaptic heteromers.51
    • DRD252
  • Adenosine A2A receptors
    • in caudate and putamen form heteromers with . CB1R-mediated motor inhibition in the striatum is completely dependent on the activation of A2AR (in the form of CB1R-ADA2 heteromers) and is abolished by A2AR antagonists. The inhibitory effect of CB1R agonists on hyperlocomotion induced by the D2 agonist quinpirole was blocked by A2AR antagonists MSX-3 as well as by the CB1R antagonist rimonabant.31
    • 5HT1A52
    • 5HT2A52
    • AT152
    • GPR5552
    • SST552
    • OX152
    • OX252
    • μOR52
    • δOR52
    • CB2R52
    • GPR5552
    • CXCR452

1.2. What is regulated by CB1R

CB1R is involved in the regulation of:

  • Coordination of movements53
    • Motor function is co-regulated by endocannabinoids that act on the subthalamic nucleus. This effect is mediated by CB1R, which are located outside the subthalamic nucleus, presumably in the globus pallidus and the PFC, among others.24
  • Reward/motivation5455
  • Spatial orientation53
  • Sensory perception (taste, smell, touch, hearing)
  • Appetite565758
    • The CB1R antagonist rimonabant inhibited the effects of appetite stimulants (cocaine, morphine and food) and reduced interest in sucrose, beer and alcohol59
    • Endocannabinoids modulate appetite and energy expenditure via CB1R. AEA has different effects on feeding behavior depending on the state of satiety and the CB1R location (peripheral or central):60
      • Peripheral: The AEA reuptake inhibitor AM404 reduced food intake in partially satiated animals, not in unsatiated animals
      • Central: AM404 induced unrestrained eating (hyperphagia) in unsatiated animals. The inverse CBR agonist SR141716A suppressed this.
    • THC use is often reported to have an appetizing effect
    • Insulin mediates endocannabinoid–mediated LTD in dopamine neurons in the VTA61
      • Insulin suppresses glutamatergic input
      • The reduced arousal drive reduces the interest in food
    • Milk intake of the infant
      • CB1R antagonists prevent the milk intake of infants on the first to fourth day and can therefore lead to their death62
        • The puppies find the nipples but cannot suckle63
        • Licking openly offered milk works64
        • Effect of rimonabant and VCHSR1 is equally strong, although rimonabant binds 14 times more strongly to CB1R than VCHSR1.65 It is therefore questionable whether the effect is mediated via CB1R alone.
      • CB1R-KO mice only stop taking milk on the first day of life62, after which this normalizes66
  • Diuresis (different from CB2R)67
  • Mental performance
  • Learning and memory546869
  • Short-term memory
    • CB1R agonists impair short-term memory70
  • Motivation53
  • Fear71727374
    • CB1R on cortical glutamatergic neurons reduce anxiety when activated75
    • CB1R on GABAergic neurons slightly increases anxiety75
      • The GABAergic pathway of endocannabinoids is involved in mediating the anxiolytic effect of benzodiazepines. Endocannabinoids can improve the anxiolytic effect of benzodiazepines.76
    • Blockade of CB1R prevents the glucocorticoid-induced decrease in conditioned freezing behavior77
      • The CB1R antagonist AM281 given i.p. as well as intra-hippocampally promoted contextual fear memory78
    • Endogenous CB1R agonists have an anxiolytic effect and prevent the occurrence of pathological anxiety states799
      • CB1R activation (by AEA or 2-AG) leads to deletion of the fear memory80
        • AEA had a primary effect on signal transmission in the amygdala
        • 2-AG induced a stronger DA release from the mesolimbic signaling pathway81
      • Endocannabinoids positively modulate avoidance behavior through increased dopamine release
        • The inverse CB1R agonist rimonabant dramatically reduced dopamine release in animal models of warning signal (light cue) and resulting active avoidance of electric foot shocks; similarly, inhibition of 2-AG82
      • The high-dose AEA reuptake inhibitor AM404 inhibited contextual fear memory78
      • In contrast, 2-AG promoted the expression of conditioned fear via CB1R binding on GABAergic neurons75
      • The CB1R antagonist SR141716 increased conditioned freezing75
      • The CBR2 antagonist AM630 reduced conditioned freezing75
      • The TRPV1 antagonist SB366791 did not affect freezing75
      • The CBR2 agonist JWH133 did not affect freezing75
      • The CBR1 and CBR2 agonist CP55.94083 increased conditioned freezing75
      • The endocannabinoid reuptake inhibitor AM404 reduced conditioned freezing75
      • The endocannabinoid reuptake inhibitor VDM11 did not affect freezing75
      • Co-administration with SR141716 or SB366791 confirmed involvement of CB1 and TRPV175
      • The AEA degradation inhibitor URB597 reduced the conditioned freezing75
      • The 2-AG degradation inhibitor JZL184 enhanced conditioned freezing75
      • The anxiety-promoting effects of 2-AG are mediated via CB1R in GABAergic neurons75
  • Defense behavior84
    • AM-404 increased the defensive behavior to the smell of an attacker in rats
    • However, the CB1R antagonist AM251 did not influence the defense behavior
  • Risk behavior / learning to avoid risks85
  • Amphetamine-mediated LTD in the amygdala86
    • Amphetamine-LTD is dose-dependently blocked by the cannabinoid CB1 receptor antagonist AM251. Neither dopamine, serotonin 1A, nor noradrenaline α2 nor GABA-B receptor antagonists affected amphetamine LTD.
  • Social behavior87
  • Mood71
  • Antidepressant effect88
  • Cramps
    • The ω-3 endocannabinoid DHEA (docosahexaenoyl ethanolamide) reduces susceptibility to seizures in mice by activating CB1R89
    • Status epilepticus was reduced by AM404 and URB597, but not by AM25190
  • Compulsive behavior91
    • CB1R inhibits compulsive behavior, TRPV1 promotes compulsive behavior. AEA acts on both receptors.92
    • The compulsive inhibitory effect of AEA diminished after 14 days, while that of the TRPV1 antagonist capsazepine was maintained.92
  • Addiction939495
    • Nicotine-dependent mice show reduced 5-HT(1A) receptors in the diencephalon:96
      • AM251 (CB1R antagonist) reduced abstinence signs
      • AM-404 (which increases AEA) reduced immobility time in a dose-dependent manner
      • The 5-HT(1A) receptor antagonist WAY 100635 abolished the immobility-inhibiting effect of AM404
    • MA-404 alleviates withdrawal symptoms97
  • Pain9899
    • Diclofenac inhibits pain via CB1R, GPR55 receptors and mu-opioid receptors of mPFC and ventrolateral periaqueductal gray in the brainstem100
    • Systemically administered cannabinoids have an analgesic effect via CB1R (but not via CB2R) via spinal 5-HT7 and 5-HT(2A) receptors101
    • CB1R influences migraine, cluster headaches102
    • Headaches are associated with increased FAAH and AMT levels (in women) and decreased AEA levels103
    • FAAH-KO mice show greatly increased anandamide levels and greatly reduced pain perception104
    • AM404 reduced mechanical and cold hyperalgesia with minimal effects on motor coordination. AM251 significantly inhibited the analgesic effect of AM404. Capsazepine enhanced the analgesic effect. AM404 has an analgesic effect in the spinal cord, primarily via CB1R, not CB2R.105
    • TRPV1 receptors appear to play a pain-increasing role in CCI rats105
  • Itching
    • URB597 and JZL184, but not AM404, attenuated serotonin-induced scratching. The CB2R antagonist SR144528 neutralized the inhibitory effect of URB597.106
  • Inhibition of excessive signal transmission by neurotransmitters
  • Sexual behavior
    • Inhibition of ejaculation107
    • CB1R antagonists (in the VTA) during copulation inhibit sexual satiety in male rats108
  • HPA axis / stress
    • Disorder of the CB1R gene (CNR1) caused hyperactivity of the HPA axis109
    • Stress reduced CB1R110
    • Stress reduces anandamide (AEA) and increases AG-2110
    • Endogenous cannabinoids appear to inhibit the HPA axis via CB1R in the brain
    • Anandamide (AEA)
      • Lowers the corticosterone level in stressed animals79
      • Reduces the endocrine stress response of the HPA axis111
      • Reduces the release of noradrenaline caused by the stress hormone CRF112 here: via AM-404, which increases AEA, and through the selective CB1R agonist ACEA. In contrast, the CB1R antagonist AM 241 increased CRF-induced noradrenaline release
      • The CBR1 and CBR2 agonist WIN55212-2 decreased corticosterone, while the endocannabinoid reuptake inhibitor AM404 as well as the endocannabinoid degradation enzyme inhibitor URB597 increased corticosterone113
    • Endogenous cannabinoids inhibit the basal and suppress the stress-induced activity of the HPA axis via the hypothalamus, pituitary gland and adrenal cortex. Stimulation of the central cannabinoid receptors leads to activation of the sympathetic nervous system79
    • Activation of the peripheral CB1R inhibits noradrenaline release from the sympathetic terminals and adrenaline release from the adrenal glands79
    • CB1Rs may not affect adaptation to daily chronic stress114
    • CB1R mediates the rapid downregulation of the HPA axis by GR agonists (endocrine feedback loop), here by dexamethasone115116 CB1R antagonists prevent downregulation.
    • Administration of the CB1R agonist WIN55,212-2 during singular stress in a PSTD mouse model:117
      • Administered intraperitoneally, prevented the trauma-related changes:
        • In the conditioning of inhibitory avoidance (IA)
        • In the conditioning of extinction
        • Acoustic startle response potentiation (ASR)
        • Inhibition of the HPA axis
      • Administered into the basolateral amygdala, prevented
        • The SPS-induced changes in IA and ASR.
      • The CB1R antagonist AM251 applied to the basolateral amygdala blocked the described effects of WIN55,212-2
  • Sleep / Circadian rhythm118
    • CB1R antagonists or FAAH inhibition promote wakefulness
    • Elevated AEA levels, due to AEA administration119 or AMT reuptake inhibition120, promote sleep
    • Lack of sleep strengthened the 2-AG rhythm121

CB1R show significant constitutive activity in vitro (i.e. spontaneous activation in the absence of ligands).42

1.3. Paths of action of CB1R

Agonist-activated CB1Rs transmit in three different spatiotemporal waves:122

  • the first wave is transient (<10 minutes) and is triggered by heterotrimeric G proteins
  • the second wave (>5 minutes) is mediated by β-arrestins
  • the third and last wave occurs in intracellular compartments and could be triggered by G-proteins or β-arrestins

Activated CB1 receptors:

  • inhibit GABA neurons (significant inhibition of evoked and spontaneous GABA-mediated synaptic events103.)
    • Consequences: less inhibition of dopamine neurons. As a result, cannabinoids indirectly increase dopamine levels.
    • The altered sensitivity of the GABA synapses caused by stimulation of the CB1R resulted in increased GABA release. This indicates that the CB1R contributes significantly to the regulation of inhibitory transmission in the striatum.103
    • However, the synthetic CB1R agonist HU210 did not cause a reduction in GABA transmission in the striatum, but led to a significant increase in GABA release123
      • Either CB1Rs can promote the release of transmitters under certain circumstances, or HU210 mediates its effects via other pathways than CB1Rs.
    • While inhibitory synapses were predominantly homeostatically reduced after chronic inactivity, decreased endocannabinoid tone strengthened a subset of GABAergic synapses in the hippocampus in vitro, increasing the likelihood of GABA release124
  • inhibit the overactivity of pain regulation and thus have a pain-relieving effect
  • THC as a CB1R agonist has a dopamine-increasing effect in the nucleus accumbens. Adenosine A2A receptor antagonists (e.g. caffeine) counteract this.125
    • Since the CB1R is not present in the brainstem, which regulates the respiratory and cardiovascular systems, an overdose of THC should not lead to related deaths3
  • CB1R (not TRPV1) mediates the amnestic effect caused by elevated AEA. AM-404 interfered with both memory consolidation and memory retrieval during contextual fear conditioning and abolished LTP induction.126
  • CB1R increase histamine127
    • The CB1R agonists ACEA and mAEA increased histamine release from the posterior hypothalamus, where the histaminergic tuberomammillary nuclei (TMN) are located, as well as from the histaminergic projection areas nucleus basalis magnocellularis and dorsal striatum
    • AM404 in the TMN limited the increased histamine release on the TMN
    • The CB1R antagonist AM251 blocked the release of histamine
  • A CB1R agonist reduced and a CB1R antagonist increased AEA in the hypothalamus128

THC causes overstimulation of the CB1R, which impairs its ability to regulate food intake, metabolism, cognitive processes and pleasure. This leads to a reduction in memory and motivation and, in the long term, to addiction. Consequences, heavy long-term cannabis use is associated with an increased risk of mental disorders, including psychosis, addiction, depression, suicidality and impaired cognition and motivation.6

Long-term agonist administration initially leads to desensitization and later (with the involvement of clathrin-coated pits) to internalization of CB1R. In the absence of an agonist, the receptor is brought back to the cell surface.129

CB1R show constitutive receptor activity: Exogenous expression of CB1R alone in neurons of the superior cervical ganglion suppressed Ca2+ current, even in the absence of CB1R agonists.130

CB1R effect over time:

  • tens of seconds16
    A brief (5 to 10 seconds) postsynaptic depolarization causes short-term depression (STD - depolarization-induced suppression of inhibition (DSI) or excitation (DSE))
    • of the glutamate input in MSN or FSI or
    • of the GABAergic input of FSI in MSN.
    • is produced by retrograde endocannabinoid mobilization at presynaptic CB1R receptors and enables fine-tuned regulation of ongoing presynaptic input
  • long-term effect: long-term depression (LTD)16
    • of CB1R-expressing
      • glutamatergic terminals from the PFC, the basolateral amygdala and the ventral hippocampus
      • GABAergic terminals from CB1-expressing FSIs

CB1R act in the opposite direction to the D2R.23

1.4. CB1R for various disorders

In epilepsy, a lack of cannabinoid receptors appears to lead to overexcitation.3 Paracetamol was able to terminate the status epilepticus in nerve cells in vitro, which was mediated via the CB1R.131
Huntington’s disease is associated with a severe loss of CB1R.103
Parkinson’s disease (destroyed dopamine neurons) shows increased CB1R expression in the basal ganglia132133 134 and increased anandamide levels135. Anandamide levels are also elevated in ADHD, but this is thought to result from altered anandamide degradation.136 DAT-KO mice, on the other hand, show massively reduced anandamide levels, which indicates that anandamide is influenced by dopamine levels.137
In our view, increased CB1R expression could theoretically be a neurophysiological explanation for the reduced risk of addiction from stimulants in ADHD, as these increase dopamine. However, this is contradicted by the fact that there is no known increased risk of THC addiction in Parkinson’s disease, which is also characterized by dopamine deficiency. It is conceivable that Parkinson’s is not characterized by a CB1R deficiency.

Omega 3 is said to increase CB1R.138

1.5. CB1R agonists and antagonists

1.5.1. CB1R agonists

CB1R agonists are among others:

  • 2-Arachidonylglycerol (2-AG)
    • complete40 CB1R and CB2R agonist4139
    • low bias for the inhibition of cAMP and the phosphorylation of extracellular signal-regulated kinase 1/2 (pERK1/2)122
  • ACEA (arachidonyl-2’chloroethylamide/N-(2chloroethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide)140
    • selective14122 / highly selective CB1R agonist54
  • ACPA (arachidonoylcyclopropylamide), selective CB1R agonist54
  • Anandamide (AEA, N-arachidonoylethanolamine)
    • Partial agonist of CB1R and CB2R103, lower affinity for CB2R than for CB1R40
    • It is possible that AEA only acts as a partial CB1R agonist without 2-AG and as a competitive antagonist in the presence of 2-AG 142
      • With low receptor density or a limited number of post-receptor effectors, AEA (like THC) can antagonize the CB1R signals triggered by 2-AG.14310144145
    • Bias at CB1R for the inhibition of cAMP122
  • AM2389 [9β-hydroxy-3-(1-hexyl-cyclobut-1-yl)-hexahydrocannabinol]67
  • AM-356 ((R)-methanandamide), a synthetic anandamide analog
  • AM4054 [9β-(hydroxymethyl)-3-(1-adamantyl)-hexahydrocannabinol]67
  • BAY 59-3074 (3-[2-cyano-3-(trifluoromethyl)phenoxy]phenyl-4,4,4-trifluoro-1-butanesulfonate), partial agonist146
  • Catechins from the tea plant (Camellia sinensis)147
  • CRA13 (SAB-378, naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone)
    • also CB2R agonist, limited CNS penetration
    • caused up to 90 percent reversal of hyperalgesia in neuropathic rat model of mechanical hyperalgesia, via CB1R122
  • CP 55940 / CP 55,94083 ((-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxy-propyl)cyclohexanol)148 Full agonist149
    • Bias for the inhibition of cAMP122
  • HU210 (strong)123 (HU = Hebrew University)
    • Bias for the inhibition of cAMP122
    • also a strong CB2R agonist150
  • HU-320
    • anti-inflammatory; shows no psychotropic effect151
  • mAEA (R(+)-methanandamide)127
    • Bias for the inhibition of cAMP122
  • THC (Δ9-tetrahydrocannabinol), partial agonist152
    • Δ9-Tetrahydrocannabinol has psychoactive metabolites, such as 11-hydroxy-THC153
  • WIN 55,212 [R-(1)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate]67
    • low bias for the inhibition of cAMP and the phosphorylation of extracellular signal-regulated kinase 1/2 (pERK1/2)122
  • Yangonin from the kava plant (Piper methysticum)154

1.5.2. Primarily peripherally active CB1R agonists

In practice, the use of CB1R agonists usually fails due to the psychotropic effect on CB1R in the brain. However, there are also CB1R agonists that do not have a psychotropic effect, mostly because they can only cross the blood-brain barrier to a limited extent:

  • 10919 is a moderate affinity CB1R agonist (Ki = 143 nM, EC50 = 1440 nM) and CB2R agonist (Ki = 14 nM) with a moderate brain/plasma ratio of 0.74.122
  • AZ11713908 is a high affinity CB1R agonist (pIC50 8.4, pEC50 8.0) and CB2R agonist (pIC50 9.0) with 7% and 5% uptake in brain compared to plasma, respectively. AZ11713908 reduced mechanical allodynia (pressure and touch pain sensitivity) in the rat spinal nerve ligation model at 2.5 μmol/kg with 100% efficacy. Of WIN 55,212, this required 8 μmol/kg.122
  • AZD1940 is a high affinity CB1R agonist (pKi 7.93) and CB2R agonist (pKi 9.06). Brain-plasma partition coefficient in rats: 0.04. Unfortunately, AZD1940 showed only limited analgesic efficacy against capsaicin-induced pain and hyperalgesia and also mild to moderate adverse effects in the CNS (central cannabinoid side effects) and gastrointestinal tract. AZD1940 was not pursued further after Phase II studies.122
  • CRA13 is a CB1R and CB2R agonist with very limited CNS penetration.122
  • HU-320 is an anti-inflammatory CB1R agonist without psychotropic effects151

In addition, some endocannabinoids act as biased ligands, i.e. they only trigger certain G-protein signaling pathways at the receptor.122

1.5.3. CB1R antagonists

CB1R antagonists are among others:

  • Anandamide (AEA, N-arachidonoylethanolamine)
    • It is possible that AEA acts as a competitive antagonist in the presence of 2-AG and as a partial CB1R agonist only in the absence of 2-AG142
      • With low receptor density or a limited number of post-receptor effectors, AEA (like THC) can antagonize the CB1R signals triggered by 2-AG.14310144145
  • AM251 (N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1-H-pyrazole-3-carboxamide)99155
    • reduces alcohol self-administration in mice155
  • AM 28124
  • AM4113 (neutral antagonist)156
  • AM6527157
  • LH-21 (almost exclusively peripherally active CBR antagonist)158
  • LY320135: Antagonist/inverse agonist159
  • O-2050159
  • O-Arachidonylethanolamide (Virodhamin)
    • partial CB1R antagonist160
  • Rimonabant (SR 141716A, N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride)
    • selective16122 CB1R receptor antagonist/partial agonist148131 162 inverse agonist163
  • VCHSR1 (5-(4-chlorophenyl)-3-[(E)-2-cyclohexylethenyl]-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole)
    • neutral CB1R antagonist, 1/14 of the binding of rimonabant164

1.5.4. Allosteric modulators of CB1R

A brief explanation of how allosteric moderation works can be found in the article Neurological basics

  • Org27569 (unknown whether POM or NOM)122
    • Bias for the inhibition of cAMP by cannabinoid ligands122
    • no influence on ERK1/2 phosphorylation of cannabinoid ligands122
1.5.4.1. Positive allosteric modulators (CB1R-POM)

POM enhance the effect of agonists or inverse agonists.
CB1R-POM are among others:122

  • GAT-211
  • GAT-228, (+)-enantiomer of GAT-211
  • GAT-229, (-)-enantiomer of GAT-211
  • ZCZ-011
  • RTI-371165
  • Pregnenolone (non-selective CB1R-PAM)
  • Lipoxin A4 (non-selective CB1R-PAM)
  • Pepcan-12 (non-selective CB1R-PAM)
1.5.4.2. Negative allosteric modulators (CB1R-NOM)

NOM inhibit the effect of agonists or inverse agonists.
CB1R-NOM are among others:

1.5.5. Binding strength to CB1R

According to binding affinity in Ki (nM; lower is stronger):150

HU210: 0.2
JWH-210: 0.5
CP47,497: 0.8
AB-FUBINACA: 0.9
AM2201: 1.0
JWH-073: 8.9
JWH-018: 9.0
XLR-144: 29.0
AEA: 32.0
THC: 41.0
2-AG: 472.0
CBD: 842.0

1.6. What influences the CB1R effect

In addition to activation by agonists and inhibition by antagonists, CB1R is also regulated by protein-protein interactions:130

  • G proteins
    • send CB1R signals to effector molecules (adenylyl cyclase, ion channels)
    • influence the affinity of the CB1R for agonists through negative heterotropic interaction
  • CRIP1a (cannabinoid receptor-interacting protein 1a)167
    • changes the preference for Gi/o subtypes from signaling via Gi3 and Go to signaling via Gi1 and Gi2
    • attenuates the agonist-mediated internalization of CB1Rs
    • inhibits the constitutive receptor action of CB1R, via which it suppresses the Ca2+ current in the absence of agonists in neurons of the superior cervical ganglion130
  • β-Arrestin 1 and β-Arrestin 2
    • change the cellular signaling patterns
    • desensitize the receptor-G-protein interaction
  • GASP (GPCR-associated sorting protein) controls the transport of internalized CB1R to the lysosome, where they are degraded

2. CB2 receptor (CB2R)

The CB2R (cannabinoid 2 receptor) is, like the CB1RG protein-coupled, but is less frequently found in the brain98 and is primarily associated with the immune system.
There are various isoforms of the CB2R:168

  • CB2RA
  • CB2RB
  • CB2RC
  • CB2RD
    The CB2R finds itself:1544
  • in the brain in:
    • PFC
    • Striatum
    • Basal ganglia
    • Amygdala
    • Hippocampus169
    • VTA
      • CB2Rs are more common in the VTA than in the nucleus accumbens or dorsal striatum in rodents168
      • CB2Rs are also found on dopamine neurons in the VTA168
    • Brain stem
    • Glial cells associated with neuritic plaques in Alzheimer’s brains
      • In the healthy brain, only a few CB2Rs are found in the microglial cells and astrocytes. Pathological conditions such as brain injuries, strokes or neurodegenerative diseases greatly increase CB2R expression.54
    • Brain capillaries and microvessels
  • peripheral
    • Immune cells129
      • Mast cells
        • Palmitoylethanolamide, but not anandamide, inhibits the activity of mast cells via CB2R.170
      • B cells
      • T-cells
      • Macrophages
      • Neutrophils

CB2R is involved in129

  • Pain regulation
    • acute pain and neuropathic pain
    • the CB2R count increases in neuropathic and inflammatory pain.98
  • Symptoms of anxiety and depression are mediated by CB1R and CB2R signaling.
    • Chronic administration of CB2R antagonists has an anxiolytic effect171
  • neuroprotective effect
  • Neuromodulation
  • Osteoporosis
  • Allergic dermatitis
  • Liver problems
  • Arteriosclerosis
  • Multiple sclerosis
  • no psychoactive effect (unlike CB1R)

CB2R agonists inhibit the firing of dopamine neurons and terminal dopamine release.172173174

CP55,940 causes internalization of CB2R175
WIN55, 212-2 and other aminoalkylindoles do not cause internalization of CB2R175
WIN55,212-2 competitively antagonized the CB2R internalization induced by CP55,940175

Echinacin contains N-isobutylamides, which are potent cannabinoid mimetics that bind to peripheral CB2R on immune cells, but not to CB1R in the CNS.176
Various spice plants contain beta-caryophyllene, which binds to CB2R.177
Immune reactions are not mediated by CB2R alone, but also by CB1R and TRPV1.178

CB2R agonists are among others:

  • 2-AG (very weak)150
  • A-836339 (2,2,3,3-tetramethyl-cyclopropanecarboxylic acid [3-(2-methoxy-ethyl)-4,5-dimethyl-3H-thiazol-(2Z)-ylidene]-amide), selective CB2R agonist179
  • ARA (very weak)150
  • AM1241 [1-(methylpiperidin-2-ylmethyl)-3-(2-iodo-5-nitrobenzoyl)indole]67
  • AM2201150
  • β-Caryophyllene (beta-caryophyllene)180
    • also binds to PPARα and PPARγ, but not to CB1R181
  • BAY 59-3074 (3-[2-cyano-3-(trifluoromethyl)phenoxy]phenyl-4,4,4-trifluoro-1-butanesulfonate), partial agonist146
  • CRA13 (SAB-378, naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone)
    • also CB1R agonist, limited CNS penetration122
  • CBD (weak)150
  • CT-3 (ajulemic acid, lenabasum, AJA, IP-751, JBT-101, anabasum), selective CB2R agonist182 is a synthetic THC analogue183
  • CP 55940 / CP 55,94083 ((-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxy-propyl)cyclohexanol)
    • also CB1 agonist148
  • GW405833, selective CB2R agonist184
  • HU210150
  • JWH018150
  • JWH073150
  • JWH133, selective CB2R agonist185
  • JWH210150
  • THC (partial agonist)152
    • probably not psychoactive on CB2R
  • Vicasinabine (RG7774)
    • selective CB2R agonist186187
  • XLR-144150

CB2 antagonists are among others:

  • AM630 (6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl) methanone)67
  • SR144528 (N-[(1S)-endo-1,3,3-trimethylbicyclo-[2.2.1]heptan-2-yl]5-(4-chloro-3-methyl-phenyl)-1-(4-methybenzyl)pyrazole-3-carboxamide)148

According to binding affinity in Ki (nM; lower is stronger):150

HU210: 0.4
JWH-210: 0.7
XLR-144: 2.1
AM2201: 2.6
JWH-018: 2.9
THC: 36.0
JWH-073: 38.0
CBD: 203.0
2-AG: 1,400.0
AEA: 1,932.0

3. GPR55: probably not a CB3 receptor

In addition to CB1R and CB2R, GPR55 was sometimes referred to as CB3R.103188 However, GPR55 has too little correspondence with CB1R and CB2R to be considered a CB receptor59

More about medicinal cannabis as a medicine for ADHD at Medicinal cannabis for ADHD

4. Downregulation, upregulation, desensitization

Cannabinoid receptors are members of the GPCR family. GPCRs are often subject to dynamic changes in their activity.
A lack of agonists can lead to upregulation.
A prolonged excess of agonists can cause desensitization and downregulation189
Agonists can trigger time- and temperature-dependent endocytosis (internalization). During endocytosis, some receptor proteins are reintegrated into the cell membrane (recycling), while others are sorted out and degraded by lysosomes, which reduces the number of receptors.190191

Homologous desensitization
The receptor that has bound a ligand is phosphorylated by a kinase (G-protein-coupled receptor kinase, GRK). This phosphorylation stabilizes the binding between the receptor and arrestins. This prevents interaction with the G protein and interrupts signal transduction.

Heterologous desensitization
The signaling chain of a receptor is interrupted or reduced (independent of ligand binding) due to activation of other receptors on the cell surface. The activated receptors activate via second messenger kinases (e.g. protein kinase A, protein kinase C), which do not phosphorylate the activated receptor itself, but other receptors.

With long-term exposure (about 18 hours), delta9-THC also desensitizes the CB1R.145


  1. Mechoulam R, Parker LA (2013): The endocannabinoid system and the brain. Annu Rev Psychol. 2013;64:21-47. doi: 10.1146/annurev-psych-113011-143739. PMID: 22804774. REVIEW

  2. O’Neill B, Gu HH (2013): Amphetamine-induced locomotion in a hyperdopaminergic ADHD mouse model depends on genetic background. Pharmacol Biochem Behav. 2013 Jan;103(3):455-9. doi: 10.1016/j.pbb.2012.09.020. PMID: 23026058; PMCID: PMC3545065.

  3. Gießen (2007): Endocannabinoide als Schutz vor Reizüberflutung, Pharmazeutische Zeitung, 27.04.2007 german

  4. Bedse G, Hill MN, Patel S (2020): 2-Arachidonoylglycerol Modulation of Anxiety and Stress Adaptation: From Grass Roots to Novel Therapeutics. Biol Psychiatry. 2020 Oct 1;88(7):520-530. doi: 10.1016/j.biopsych.2020.01.015. PMID: 32197779; PMCID: PMC7486996. REVIEW

  5. Grotenhermen (2018): Das Endocannabinoidsystem: Körpereigene Cannabinoide und Cannabinoidrezeptoren.

  6. Tomaselli G, Vallée M (2019): Stress and drug abuse-related disorders: The promising therapeutic value of neurosteroids focus on pregnenolone-progesterone-allopregnanolone pathway. Front Neuroendocrinol. 2019 Oct;55:100789. doi: 10.1016/j.yfrne.2019.100789. PMID: 31525393. REVIEW

  7. McMahon LR (2006): Discriminative stimulus effects of the cannabinoid CB1 antagonist SR 141716A in rhesus monkeys pretreated with Delta9-tetrahydrocannabinol. Psychopharmacology (Berl). 2006 Oct;188(3):306-14. doi: 10.1007/s00213-006-0500-6. PMID: 16953389.

  8. Maldonado R, Rodríguez de Fonseca F (2002): Cannabinoid addiction: behavioral models and neural correlates. J Neurosci. 2002 May 1;22(9):3326-31. doi: 10.1523/JNEUROSCI.22-09-03326.2002. PMID: 11978807; PMCID: PMC6758395. REVIEW

  9. Laksmidewi AAAP, Soejitno A (2021): Endocannabinoid and dopaminergic system: the pas de deux underlying human motivation and behaviors. J Neural Transm (Vienna). 2021 May;128(5):615-630. doi: 10.1007/s00702-021-02326-y. PMID: 33712975; PMCID: PMC8105194. REVIEW

  10. Kellogg R, Mackie K, Straiker A (2009): Cannabinoid CB1 receptor-dependent long-term depression in autaptic excitatory neurons. J Neurophysiol. 2009 Aug;102(2):1160-71. doi: 10.1152/jn.00266.2009. PMID: 19494194; PMCID: PMC2724344.

  11. Van Waes V, Beverley JA, Siman H, Tseng KY, Steiner H (2012): CB1 Cannabinoid Receptor Expression in the Striatum: Association with Corticostriatal Circuits and Developmental Regulation. Front Pharmacol. 2012 Mar 12;3:21. doi: 10.3389/fphar.2012.00021. PMID: 22416230; PMCID: PMC3298893.

  12. Heng L, Beverley JA, Steiner H, Tseng KY (2011): Differential developmental trajectories for CB1 cannabinoid receptor expression in limbic/associative and sensorimotor cortical areas. Synapse. 2011 Apr;65(4):278-86. doi: 10.1002/syn.20844. PMID: 20687106; PMCID: PMC2978763.

  13. Coelho AA, Lima-Bastos S, Gobira PH, Lisboa SF (2023): Endocannabinoid signaling and epigenetics modifications in the neurobiology of stress-related disorders. Neuronal Signal. 2023 Jul 25;7(2):NS20220034. doi: 10.1042/NS20220034. PMID: 37520658; PMCID: PMC10372471. REVIEW

  14. Tsou K, Brown S, Sañudo-Peña MC, Mackie K, Walker JM (1998): Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience. 1998 Mar;83(2):393-411. doi: 10.1016/s0306-4522(97)00436-3. PMID: 9460749.

  15. Navarrete F, García-Gutiérrez MS, Jurado-Barba R, Rubio G, Gasparyan A, Austrich-Olivares A, Manzanares J (2020): Endocannabinoid System Components as Potential Biomarkers in Psychiatry. Front Psychiatry. 2020 Apr 27;11:315. doi: 10.3389/fpsyt.2020.00315. PMID: 32395111; PMCID: PMC7197485. REVIEW

  16. Covey DP, Yocky AG (2021): Endocannabinoid Modulation of Nucleus Accumbens Microcircuitry and Terminal Dopamine Release. Front Synaptic Neurosci. 2021 Aug 23;13:734975. doi: 10.3389/fnsyn.2021.734975. PMID: 34497503; PMCID: PMC8419321. REVIEW

  17. Adriani W, Laviola G (2004): Windows of vulnerability to psychopathology and therapeutic strategy in the adolescent rodent model. Behav Pharmacol. 2004 Sep;15(5-6):341-52. doi: 10.1097/00008877-200409000-00005. PMID: 15343057. REVIEW

  18. Wenger T, Moldrich G, Furst S (2003): Neuromorphological background of cannabis addiction. Brain Res Bull. 2003 Jul 15;61(2):125-8. doi: 10.1016/s0361-9230(03)00081-9. PMID: 12831997.

  19. Winters BD, Krüger JM, Huang X, Gallaher ZR, Ishikawa M, Czaja K, Krueger JM, Huang YH, Schlüter OM, Dong Y (2012): Cannabinoid receptor 1-expressing neurons in the nucleus accumbens. Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):E2717-25. doi: 10.1073/pnas.1206303109. PMID: 23012412; PMCID: PMC3479600.

  20. El Khoury MA, Gorgievski V, Moutsimilli L, Giros B, Tzavara ET (2012): Interactions between the cannabinoid and dopaminergic systems: evidence from animal studies. Prog Neuropsychopharmacol Biol Psychiatry. 2012 Jul 2;38(1):36-50. doi: 10.1016/j.pnpbp.2011.12.005. PMID: 22300746. REVIEW

  21. Martín AB, Fernandez-Espejo E, Ferrer B, Gorriti MA, Bilbao A, Navarro M, Rodriguez de Fonseca F, Moratalla R (2008): Expression and function of CB1 receptor in the rat striatum: localization and effects on D1 and D2 dopamine receptor-mediated motor behaviors. Neuropsychopharmacology. 2008 Jun;33(7):1667-79. doi: 10.1038/sj.npp.1301558. PMID: 17957223.

  22. Köfalvi A, Rodrigues RJ, Ledent C, Mackie K, Vizi ES, Cunha RA, Sperlágh B (2005): Involvement of cannabinoid receptors in the regulation of neurotransmitter release in the rodent striatum: a combined immunochemical and pharmacological analysis. J Neurosci. 2005 Mar 16;25(11):2874-84. doi: 10.1523/JNEUROSCI.4232-04.2005. PMID: 15772347; PMCID: PMC6725145.

  23. Fitzgerald ML, Shobin E, Pickel VM (2012): Cannabinoid modulation of the dopaminergic circuitry: implications for limbic and striatal output. Prog Neuropsychopharmacol Biol Psychiatry. 2012 Jul 2;38(1):21-9. doi: 10.1016/j.pnpbp.2011.12.004. PMID: 22265889; PMCID: PMC3389172. REVIEW

  24. Morera-Herreras T, Ruiz-Ortega JA, Taupignon A, Baufreton J, Manuel I, Rodriguez-Puertas R, Ugedo L (2010): Regulation of subthalamic neuron activity by endocannabinoids. Synapse. 2010 Sep;64(9):682-98. doi: 10.1002/syn.20778. PMID: 20336631.

  25. Fortin DA, Levine ES (2007): Differential effects of endocannabinoids on glutamatergic and GABAergic inputs to layer 5 pyramidal neurons. Cereb Cortex. 2007 Jan;17(1):163-74. doi: 10.1093/cercor/bhj133. PMID: 16467564.

  26. Hill EL, Gallopin T, Férézou I, Cauli B, Rossier J, Schweitzer P, Lambolez B (2007): Functional CB1 receptors are broadly expressed in neocortical GABAergic and glutamatergic neurons. J Neurophysiol. 2007 Apr;97(4):2580-9. doi: 10.1152/jn.00603.2006. PMID: 17267760.

  27. Lafenêtre P, Chaouloff F, Marsicano G (2009): Bidirectional regulation of novelty-induced behavioral inhibition by the endocannabinoid system. Neuropharmacology. 2009 Dec;57(7-8):715-21. doi: 10.1016/j.neuropharm.2009.07.014. PMID: 19607846.

  28. Mackie K (2005): Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb Exp Pharmacol. 2005;(168):299-325. doi: 10.1007/3-540-26573-2_10. PMID: 16596779. REVIEW

  29. Oropeza VC, Mackie K, Van Bockstaele EJ (2007): Cannabinoid receptors are localized to noradrenergic axon terminals in the rat frontal cortex. Brain Res. 2007 Jan 5;1127(1):36-44. doi: 10.1016/j.brainres.2006.09.110. PMID: 17113043; PMCID: PMC1839952.

  30. Ferreira-Junior NC, Fedoce AG, Alves FH, Corrêa FM, Resstel LB (2012): Medial prefrontal cortex endocannabinoid system modulates baroreflex activity through CB(1) receptors. Am J Physiol Regul Integr Comp Physiol. 2012 Apr;302(7):R876-85. doi: 10.1152/ajpregu.00330.2011. PMID: 22204950.

  31. Pinna A, Serra M, Marongiu J, Morelli M (2020): Pharmacological interactions between adenosine A2A receptor antagonists and different neurotransmitter systems. Parkinsonism Relat Disord. 2020 Nov;80 Suppl 1:S37-S44. doi: 10.1016/j.parkreldis.2020.10.023. PMID: 33349579. REVIEW

  32. Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991): Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci. 1991 Feb;11(2):563-83. doi: 10.1523/JNEUROSCI.11-02-00563.1991. PMID: 1992016; PMCID: PMC6575215.

  33. Mlost J, Wąsik A, Starowicz K (2019): Role of endocannabinoid system in dopamine signalling within the reward circuits affected by chronic pain. Pharmacol Res. 2019 May;143:40-47. doi: 10.1016/j.phrs.2019.02.029. PMID: 30831242. REVIEW

  34. Tsou K, Mackie K, Sañudo-Peña MC, Walker JM (1999): Cannabinoid CB1 receptors are localized primarily on cholecystokinin-containing GABAergic interneurons in the rat hippocampal formation. Neuroscience. 1999;93(3):969-75. doi: 10.1016/s0306-4522(99)00086-x. PMID: 10473261.

  35. Hill MN, McLaughlin RJ, Bingham B, Shrestha L, Lee TT, Gray JM, Hillard CJ, Gorzalka BB, Viau V (2010): Endogenous cannabinoid signaling is essential for stress adaptation. Proc Natl Acad Sci U S A. 2010 May 18;107(20):9406-11. doi: 10.1073/pnas.0914661107. PMID: 20439721; PMCID: PMC2889099.

  36. Hernandez G, Khodami-Pour A, Lévesque D, Rompré PP (2015): Reduction in Ventral Midbrain NMDA Receptors Reveals Two Opposite Modulatory Roles for Glutamate on Reward. Neuropsychopharmacology. 2015 Jun;40(7):1682-91. doi: 10.1038/npp.2015.14. PMID: 25578795; PMCID: PMC4915250.

  37. Molina-Holgado E, Vela JM, Arévalo-Martín A, Almazán G, Molina-Holgado F, Borrell J, Guaza C (2002): Cannabinoids promote oligodendrocyte progenitor survival: involvement of cannabinoid receptors and phosphatidylinositol-3 kinase/Akt signaling. J Neurosci. 2002 Nov 15;22(22):9742-53. doi: 10.1523/JNEUROSCI.22-22-09742.2002. PMID: 12427829; PMCID: PMC6757831.

  38. Gomez O, Sanchez-Rodriguez A, Le M, Sanchez-Caro C, Molina-Holgado F, Molina-Holgado E (2011): Cannabinoid receptor agonists modulate oligodendrocyte differentiation by activating PI3K/Akt and the mammalian target of rapamycin (mTOR) pathways. Br J Pharmacol. 2011 Aug;163(7):1520-32. doi: 10.1111/j.1476-5381.2011.01414.x. PMID: 21480865; PMCID: PMC3165960.

  39. Romero J, Garcia-Palomero E, Berrendero F, Garcia-Gil L, Hernandez ML, Ramos JA, Fernández-Ruiz JJ (1997): Atypical location of cannabinoid receptors in white matter areas during rat brain development. Synapse. 1997 Jul;26(3):317-23. doi: 10.1002/(SICI)1098-2396(199707)26:3<317::AID-SYN12>3.0.CO;2-S. PMID: 9183820.

  40. Ren SY, Wang ZZ, Zhang Y, Chen NH (2020): Potential application of endocannabinoid system agents in neuropsychiatric and neurodegenerative diseases-focusing on FAAH/MAGL inhibitors. Acta Pharmacol Sin. 2020 Oct;41(10):1263-1271. doi: 10.1038/s41401-020-0385-7. PMID: 32203086; PMCID: PMC7608191. REVIEW

  41. Irving AJ, Coutts AA, Harvey J, Rae MG, Mackie K, Bewick GS, Pertwee RG (2000): Functional expression of cell surface cannabinoid CB(1) receptors on presynaptic inhibitory terminals in cultured rat hippocampal neurons. Neuroscience. 2000;98(2):253-62. doi: 10.1016/s0306-4522(00)00120-2. PMID: 10854756.

  42. Leterrier C, Lainé J, Darmon M, Boudin H, Rossier J, Lenkei Z (2006): Constitutive activation drives compartment-selective endocytosis and axonal targeting of type 1 cannabinoid receptors. J Neurosci. 2006 Mar 22;26(12):3141-53. doi: 10.1523/JNEUROSCI.5437-05.2006. PMID: 16554465; PMCID: PMC6674101.

  43. McDonald NA, Henstridge CM, Connolly CN, Irving AJ (2007): An essential role for constitutive endocytosis, but not activity, in the axonal targeting of the CB1 cannabinoid receptor. Mol Pharmacol. 2007 Apr;71(4):976-84. doi: 10.1124/mol.106.029348. PMID: 17182888.

  44. Kibret BG, Ishiguro H, Horiuchi Y, Onaivi ES (2022): New Insights and Potential Therapeutic Targeting of CB2 Cannabinoid Receptors in CNS Disorders. Int J Mol Sci. 2022 Jan 17;23(2):975. doi: 10.3390/ijms23020975. PMID: 35055161; PMCID: PMC8778243. REVIEW

  45. Terzian AL, Drago F, Wotjak CT, Micale V (2011): The Dopamine and Cannabinoid Interaction in the Modulation of Emotions and Cognition: Assessing the Role of Cannabinoid CB1 Receptor in Neurons Expressing Dopamine D1 Receptors. Front Behav Neurosci. 2011 Aug 17;5:49. doi: 10.3389/fnbeh.2011.00049. PMID: 21887137; PMCID: PMC3156975.

  46. Terzian AL, Micale V, Wotjak CT (2014): Cannabinoid receptor type 1 receptors on GABAergic vs. glutamatergic neurons differentially gate sex-dependent social interest in mice. Eur J Neurosci. 2014 Jul;40(1):2293-8. doi: 10.1111/ejn.12561. PMID: 24698342.

  47. Scheyer A, Yasmin F, Naskar S, Patel S (2023): Endocannabinoids at the synapse and beyond: implications for neuropsychiatric disease pathophysiology and treatment. Neuropsychopharmacology. 2023 Jan;48(1):37-53. doi: 10.1038/s41386-022-01438-7. PMID: 36100658; PMCID: PMC9700791. REVIEW

  48. Freund TF, Katona I, Piomelli D (2003): Role of endogenous cannabinoids in synaptic signaling. Physiol Rev. 2003 Jul;83(3):1017-66. doi: 10.1152/physrev.00004.2003. PMID: 12843414. REVIEW

  49. Busquets-Garcia A, Bains J, Marsicano G (2018): CB1 Receptor Signaling in the Brain: Extracting Specificity from Ubiquity. Neuropsychopharmacology. 2018 Jan;43(1):4-20. doi: 10.1038/npp.2017.206. PMID: 28862250; PMCID: PMC5719111. REVIEW

  50. Hudson BD, Hébert TE, Kelly ME (2010): Ligand- and heterodimer-directed signaling of the CB(1) cannabinoid receptor. Mol Pharmacol. 2010 Jan;77(1):1-9. doi: 10.1124/mol.109.060251. PMID: 19837905. REVIEW

  51. Kibret BG, Canseco-Alba A, Onaivi ES, Engidawork E (2023): Crosstalk between the endocannabinoid and mid-brain dopaminergic systems: Implication in dopamine dysregulation. Front Behav Neurosci. 2023 Mar 16;17:1137957. doi: 10.3389/fnbeh.2023.1137957. PMID: 37009000; PMCID: PMC10061032. REVIEW

  52. Morales P, Reggio PH (2017): An Update on Non-CB1, Non-CB2 Cannabinoid Related G-Protein-Coupled Receptors. Cannabis Cannabinoid Res. 2017 Oct 1;2(1):265-273. doi: 10.1089/can.2017.0036. PMID: 29098189; PMCID: PMC5665501. REVIEW

  53. Herkenham M (1992): Cannabinoid receptor localization in brain: relationship to motor and reward systems. Ann N Y Acad Sci. 1992 Jun 28;654:19-32. doi: 10.1111/j.1749-6632.1992.tb25953.x. PMID: 1385932.

  54. Zhao S, Gu ZL, Yue YN, Zhang X, Dong Y (2024): Cannabinoids and monoaminergic system: implications for learning and memory. Front Neurosci. 2024 Aug 14;18:1425532. doi: 10.3389/fnins.2024.1425532. PMID: 39206116; PMCID: PMC11349573. REVIEW

  55. Wang H, Lupica CR (2014): Release of endogenous cannabinoids from ventral tegmental area dopamine neurons and the modulation of synaptic processes. Prog Neuropsychopharmacol Biol Psychiatry. 2014 Jul 3;52:24-7. doi: 10.1016/j.pnpbp.2014.01.019. PMID: 24495779; PMCID: PMC4018213. REVIEW

  56. Roque-Bravo R, Silva RS, Malheiro RF, Carmo H, Carvalho F, da Silva DD, Silva JP (2023): Synthetic Cannabinoids: A Pharmacological and Toxicological Overview. Annu Rev Pharmacol Toxicol. 2023 Jan 20;63:187-209. doi: 10.1146/annurev-pharmtox-031122-113758. PMID: 35914767. REVIEW

  57. Razmovski-Naumovski V, Luckett T, Amgarth-Duff I, Agar MR (2022): Efficacy of medicinal cannabis for appetite-related symptoms in people with cancer: A systematic review. Palliat Med. 2022 Jun;36(6):912-927. doi: 10.1177/02692163221083437. PMID: 35360989. METASTUDY

  58. Riggs PK, Vaida F, Rossi SS, Sorkin LS, Gouaux B, Grant I, Ellis RJ (2012): A pilot study of the effects of cannabis on appetite hormones in HIV-infected adult men. Brain Res. 2012 Jan 11;1431:46-52. doi: 10.1016/j.brainres.2011.11.001. PMID: 22133305; PMCID: PMC6200580.

  59. Onaivi ES (2009): Cannabinoid receptors in brain: pharmacogenetics, neuropharmacology, neurotoxicology, and potential therapeutic applications. Int Rev Neurobiol. 2009;88:335-69. doi: 10.1016/S0074-7742(09)88012-4. PMID: 19897083. REVIEW

  60. Reyes-Cabello C, Alen F, Gómez R, Serrano A, Rivera P, Orio L, Rodríguez de Fonseca F, Pavón FJ (2012): Effects of the anandamide uptake blocker AM404 on food intake depend on feeding status and route of administration. Pharmacol Biochem Behav. 2012 Mar;101(1):1-7. doi: 10.1016/j.pbb.2011.11.011. PMID: 22133635.

  61. Labouèbe G, Liu S, Dias C, Zou H, Wong JC, Karunakaran S, Clee SM, Phillips AG, Boutrel B, Borgland SL (2013): Insulin induces long-term depression of ventral tegmental area dopamine neurons via endocannabinoids. Nat Neurosci. 2013 Mar;16(3):300-8. doi: 10.1038/nn.3321. PMID: 23354329; PMCID: PMC4072656.

  62. Fride E, Foox A, Rosenberg E, Faigenboim M, Cohen V, Barda L, Blau H, Mechoulam R (2003): Milk intake and survival in newborn cannabinoid CB1 receptor knockout mice: evidence for a “CB3” receptor. Eur J Pharmacol. 2003 Feb 7;461(1):27-34. doi: 10.1016/s0014-2999(03)01295-0. PMID: 12568912.

  63. Fride E (2004): The endocannabinoid-CB(1) receptor system in pre- and postnatal life. Eur J Pharmacol. 2004 Oct 1;500(1-3):289-97. doi: 10.1016/j.ejphar.2004.07.033. PMID: 15464041. REVIEW

  64. Fride E (2008): Multiple roles for the endocannabinoid system during the earliest stages of life: pre- and postnatal development. J Neuroendocrinol. 2008 May;20 Suppl 1:75-81. doi: 10.1111/j.1365-2826.2008.01670.x. PMID: 18426504. REVIEW

  65. Manduca A, Campolongo P, Trezza V (2012): Cannabinoid modulation of mother-infant interaction: is it just about milk? Rev Neurosci. 2012;23(5-6):707-22. doi: 10.1515/revneuro-2012-0074. PMID: 23104854.

  66. Fride E (2004): The endocannabinoid-CB receptor system: Importance for development and in pediatric disease. Neuro Endocrinol Lett. 2004 Feb-Apr;25(1-2):24-30. PMID: 15159678. REVIEW

  67. Paronis CA, Thakur GA, Bajaj S, Nikas SP, Vemuri VK, Makriyannis A, Bergman J (2013): Diuretic effects of cannabinoids. J Pharmacol Exp Ther. 2013 Jan;344(1):8-14. doi: 10.1124/jpet.112.199331. PMID: 23019138; PMCID: PMC3533417.

  68. Vaseghi S, Babapour V, Nasehi M, Zarrindast MR (2018): The role of CA1 CB1 receptors on lithium-induced spatial memory impairment in rats. EXCLI J. 2018 Sep 20;17:916-934. doi: 10.17179/excli2018-1511. PMID: 30564071; PMCID: PMC6295625.

  69. Kruk-Slomka M, Dzik A, Budzynska B, Biala G (2017): Endocannabinoid System: the Direct and Indirect Involvement in the Memory and Learning Processes-a Short Review. Mol Neurobiol. 2017 Dec;54(10):8332-8347. doi: 10.1007/s12035-016-0313-5. PMID: 27924524; PMCID: PMC5684264. REVIEW

  70. Goonawardena AV, Sesay J, Sexton CA, Riedel G, Hampson RE (2011): Pharmacological elevation of anandamide impairs short-term memory by altering the neurophysiology in the hippocampus. Neuropharmacology. 2011 Oct-Nov;61(5-6):1016-25. doi: 10.1016/j.neuropharm.2011.07.003. PMID: 21767554; PMCID: PMC3156972.

  71. Hillard CJ, Huang H, Vogt CD, Rodrigues BE, Neumann TS, Sem DS, Schroeder F, Cunningham CW (2017): Endocannabinoid Transport Proteins: Discovery of Tools to Study Sterol Carrier Protein-2. Methods Enzymol. 2017;593:99-121. doi: 10.1016/bs.mie.2017.06.017. PMID: 28750817; PMCID: PMC6904209.

  72. Rutkowska M, Jamontt J, Gliniak H (2006): Effects of cannabinoids on the anxiety-like response in mice. Pharmacol Rep. 2006 Mar-Apr;58(2):200-6. PMID: 16702621.

  73. Kathuria S, Gaetani S, Fegley D, Valiño F, Duranti A, Tontini A, Mor M, Tarzia G, La Rana G, Calignano A, Giustino A, Tattoli M, Palmery M, Cuomo V, Piomelli D (2003): Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med. 2003 Jan;9(1):76-81. doi: 10.1038/nm803. PMID: 12461523.

  74. Lisboa SF, Borges AA, Nejo P, Fassini A, Guimarães FS, Resstel LB (2015): Cannabinoid CB1 receptors in the dorsal hippocampus and prelimbic medial prefrontal cortex modulate anxiety-like behavior in rats: additional evidence. Prog Neuropsychopharmacol Biol Psychiatry. 2015 Jun 3;59:76-83. doi: 10.1016/j.pnpbp.2015.01.005. PMID: 25595265.

  75. Llorente-Berzal A, Terzian AL, di Marzo V, Micale V, Viveros MP, Wotjak CT (2015): 2-AG promotes the expression of conditioned fear via cannabinoid receptor type 1 on GABAergic neurons. Psychopharmacology (Berl). 2015 Aug;232(15):2811-25. doi: 10.1007/s00213-015-3917-y. PMID: 25814137.

  76. Pakkhesal S, Shakouri M, Mosaddeghi-Heris R, Nasab SK, Salehi N, Sharafi A, Ahmadalipour A (2025): Bridging the gap: The endocannabinoid system as a functional fulcrum for benzodiazepines in a novel frontier of anxiety pharmacotherapy. Pharmacol Ther. 2025 Jan 23:108799. doi: 10.1016/j.pharmthera.2025.108799. PMID: 39862927. REVIEW

  77. Bitencourt RM, Pamplona FA, Takahashi RN (2014): Corticosteroid-endocannabinoid loop supports decrease of fear-conditioned response in rats. Eur Neuropsychopharmacol. 2014 Jul;24(7):1091-102. doi: 10.1016/j.euroneuro.2014.01.010. PMID: 24491954.

  78. Lin QS, Yang Q, Liu DD, Sun Z, Dang H, Liang J, Wang YX, Chen J, Li ST (2011): Hippocampal endocannabinoids play an important role in induction of long-term potentiation and regulation of contextual fear memory formation. Brain Res Bull. 2011 Oct 10;86(3-4):139-45. doi: 10.1016/j.brainresbull.2011.07.011. PMID: 21801815.

  79. Krylatov AV, Serebrov VY (2016): [THE ROLE OF THE ENDOGENOUS CANNABINOID SYSTEM IN THE FORMATION OF THE GENERAL ADAPTATION SYNDROME]. Ross Fiziol Zh Im I M Sechenova. 2016 Nov;102(11):1265-79. Russian. PMID: 30193444. REVIEW

  80. Ruehle S, Rey AA, Remmers F, Lutz B (2012): The endocannabinoid system in anxiety, fear memory and habituation. J Psychopharmacol. 2012 Jan;26(1):23-39. doi: 10.1177/0269881111408958. PMID: 21768162; PMCID: PMC3267552. REVIEW

  81. Parsons LH, Hurd YL (2015): Endocannabinoid signalling in reward and addiction. Nat Rev Neurosci. 2015 Oct;16(10):579-94. doi: 10.1038/nrn4004. PMID: 26373473; PMCID: PMC4652927. REVIEW

  82. Everett TJ, Gomez DM, Hamilton LR, Oleson EB (2021): Endocannabinoid modulation of dopamine release during reward seeking, interval timing, and avoidance. Prog Neuropsychopharmacol Biol Psychiatry. 2021 Jan 10;104:110031. doi: 10.1016/j.pnpbp.2020.110031. PMID: 32663486. REVIEW

  83. Leishman E, Murphy MN, Murphy MI, Mackie K, Bradshaw HB (2018): Broad and Region-Specific Impacts of the Synthetic Cannabinoid CP 55,940 in Adolescent and Adult Female Mouse Brains. Front Mol Neurosci. 2018 Nov 27;11:436. doi: 10.3389/fnmol.2018.00436. PMID: 30542263; PMCID: PMC6277767.

  84. Hill MN, Kambo JS, Sun JC, Gorzalka BB, Galea LA (2006): Endocannabinoids modulate stress-induced suppression of hippocampal cell proliferation and activation of defensive behaviours. Eur J Neurosci. 2006 Oct;24(7):1845-9. doi: 10.1111/j.1460-9568.2006.05061.x. PMID: 17067290.

  85. Micale V, Stepan J, Jurik A, Pamplona FA, Marsch R, Drago F, Eder M, Wotjak CT (2017): Extinction of avoidance behavior by safety learning depends on endocannabinoid signaling in the hippocampus. J Psychiatr Res. 2017 Jul;90:46-59. doi: 10.1016/j.jpsychires.2017.02.002. PMID: 28222356.

  86. Huang YC, Wang SJ, Chiou LC, Gean PW (2003): Mediation of amphetamine-induced long-term depression of synaptic transmission by CB1 cannabinoid receptors in the rat amygdala. J Neurosci. 2003 Nov 12;23(32):10311-20. doi: 10.1523/JNEUROSCI.23-32-10311.2003. PMID: 14614090; PMCID: PMC6741012.

  87. Trezza V, Damsteegt R, Manduca A, Petrosino S, Van Kerkhof LW, Pasterkamp RJ, Zhou Y, Campolongo P, Cuomo V, Di Marzo V, Vanderschuren LJ (2012): Endocannabinoids in amygdala and nucleus accumbens mediate social play reward in adolescent rats. J Neurosci. 2012 Oct 24;32(43):14899-908. doi: 10.1523/JNEUROSCI.0114-12.2012. PMID: 23100412; PMCID: PMC3496852.

  88. Hill MN, Gorzalka BB (2005): Pharmacological enhancement of cannabinoid CB1 receptor activity elicits an antidepressant-like response in the rat forced swim test. Eur Neuropsychopharmacol. 2005 Dec;15(6):593-9. doi: 10.1016/j.euroneuro.2005.03.003. PMID: 15916883.

  89. Ghanbari MM, Loron AG, Sayyah M (2021): The ω-3 endocannabinoid docosahexaenoyl ethanolamide reduces seizure susceptibility in mice by activating cannabinoid type 1 receptors. Brain Res Bull. 2021 May;170:74-80. doi: 10.1016/j.brainresbull.2021.02.011. PMID: 33581310.

  90. Shubina L, Aliev R, Kitchigina V (2015): Attenuation of kainic acid-induced status epilepticus by inhibition of endocannabinoid transport and degradation in guinea pigs. Epilepsy Res. 2015 Mar;111:33-44. doi: 10.1016/j.eplepsyres.2015.01.003. PMID: 25769371.

  91. Gomes FV, Casarotto PC, Resstel LB, Guimarães FS (2011): Facilitation of CB1 receptor-mediated neurotransmission decreases marble burying behavior in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2011 Mar 30;35(2):434-8. doi: 10.1016/j.pnpbp.2010.11.027. PMID: 21111767.

  92. Umathe SN, Manna SS, Jain NS (2012): Endocannabinoid analogues exacerbate marble-burying behavior in mice via TRPV1 receptor. Neuropharmacology. 2012 Apr;62(5-6):2024-33. doi: 10.1016/j.neuropharm.2011.12.030. PMID: 22248639.

  93. Solinas M, Panlilio LV, Tanda G, Makriyannis A, Matthews SA, Goldberg SR (2005): Cannabinoid agonists but not inhibitors of endogenous cannabinoid transport or metabolism enhance the reinforcing efficacy of heroin in rats. Neuropsychopharmacology. 2005 Nov;30(11):2046-57. doi: 10.1038/sj.npp.1300754. PMID: 15870833.

  94. Scherma M, Justinová Z, Zanettini C, Panlilio LV, Mascia P, Fadda P, Fratta W, Makriyannis A, Vadivel SK, Gamaleddin I, Le Foll B, Goldberg SR (2012): The anandamide transport inhibitor AM404 reduces the rewarding effects of nicotine and nicotine-induced dopamine elevations in the nucleus accumbens shell in rats. Br J Pharmacol. 2012 Apr;165(8):2539-48. doi: 10.1111/j.1476-5381.2011.01467.x. PMID: 21557729; PMCID: PMC3423245.

  95. Mohammadi M, Omidiani SE, Azizbeigi R, Haghparast A (2024): Cannabidiol Plays a Modulatory Function on the Methamphetamine-Induced Reward Through Hippocampal D2-Like Dopamine Receptors. Neurochem Res. 2024 Nov 14;50(1):6. doi: 10.1007/s11064-024-04256-z. PMID: 39540967.

  96. Mannucci C, Navarra M, Pieratti A, Russo GA, Caputi AP, Calapai G (2011): Interactions between endocannabinoid and serotonergic systems in mood disorders caused by nicotine withdrawal. Nicotine Tob Res. 2011 Apr;13(4):239-47. doi: 10.1093/ntr/ntq242. PMID: 21324836.

  97. Del Arco I, Navarro M, Bilbao A, Ferrer B, Piomelli D, Rodríguez De Fonseca F (2002): Attenuation of spontaneous opiate withdrawal in mice by the anandamide transport inhibitor AM404. Eur J Pharmacol. 2002 Nov 1;454(1):103-4. doi: 10.1016/s0014-2999(02)02483-4. PMID: 12409011.

  98. Zhang M, Wang T, Meng F, Jiang M, Wu S, Xu H (2024): The endocannabinoid system in the brain undergoes long-lasting changes following neuropathic pain. iScience. 2024 Nov 22;27(12):111409. doi: 10.1016/j.isci.2024.111409. PMID: 39717086; PMCID: PMC11664153. REVIEW

  99. Gühring H, Hamza M, Sergejeva M, Ates M, Kotalla CE, Ledent C, Brune K (2002): A role for endocannabinoids in indomethacin-induced spinal antinociception. Eur J Pharmacol. 2002 Nov 15;454(2-3):153-63. doi: 10.1016/s0014-2999(02)02485-8. PMID: 12421642.

  100. Tamaddonfard, Erfanparast, Salighedar, Tamaddonfard (2020): Medial prefrontal cortex diclofenac-induced antinociception is mediated through GPR55, cannabinoid CB1, and mu-opioid receptors of this area and periaqueductal gray. Naunyn Schmiedebergs Arch Pharmacol. 2020 Mar;393(3):371-379. doi: 10.1007/s00210-019-01735-x. PMID: 31641818.

  101. Seyrek M, Kahraman S, Deveci MS, Yesilyurt O, Dogrul A (2010): Systemic cannabinoids produce CB₁-mediated antinociception by activation of descending serotonergic pathways that act upon spinal 5-HT(7) and 5-HT(2A) receptors. Eur J Pharmacol. 2010 Dec 15;649(1-3):183-94. doi: 10.1016/j.ejphar.2010.09.039. PMID: 20868676.

  102. Akerman S, Holland PR, Goadsby PJ (2007): Cannabinoid (CB1) receptor activation inhibits trigeminovascular neurons. J Pharmacol Exp Ther. 2007 Jan;320(1):64-71. doi: 10.1124/jpet.106.106971. PMID: 17018694.

  103. Centonze D, Battistini L, Maccarrone M (2008): The endocannabinoid system in peripheral lymphocytes as a mirror of neuroinflammatory diseases. Curr Pharm Des. 2008;14(23):2370-42. doi: 10.2174/138161208785740018. PMID: 18781987. REVIEW

  104. Cravatt BF, Lichtman AH (2004): The endogenous cannabinoid system and its role in nociceptive behavior. J Neurobiol. 2004 Oct;61(1):149-60. doi: 10.1002/neu.20080. PMID: 15362158. REVIEW

  105. Haranishi Y, Hara K, Terada T (2021): Inhibitory effect of intrathecally administered AM404, an endocannabinoid reuptake inhibitor, on neuropathic pain in a rat chronic constriction injury model. Pharmacol Rep. 2021 Jun;73(3):820-827. doi: 10.1007/s43440-021-00250-2. PMID: 33783763.

  106. Tosun NC, Gunduz O, Ulugol A (2015): Attenuation of serotonin-induced itch responses by inhibition of endocannabinoid degradative enzymes, fatty acid amide hydrolase and monoacylglycerol lipase. J Neural Transm (Vienna). 2015 Mar;122(3):363-7. doi: 10.1007/s00702-014-1251-x. PMID: 24915981.

  107. Gorzalka BB, Morrish AC, Hill MN (2008): Endocannabinoid modulation of male rat sexual behavior. Psychopharmacology (Berl). 2008 Jul;198(4):479-86. doi: 10.1007/s00213-007-0901-1. PMID: 17694389.

  108. Rodríguez-Manzo G, Canseco-Alba A (2023): The endogenous cannabinoid system modulates male sexual behavior expression. Front Behav Neurosci. 2023 May 31;17:1198077. doi: 10.3389/fnbeh.2023.1198077. PMID: 37324524; PMCID: PMC10264596. REVIEW

  109. Barna I, Zelena D, Arszovszki AC, Ledent C (2004): The role of endogenous cannabinoids in the hypothalamo-pituitary-adrenal axis regulation: in vivo and in vitro studies in CB1 receptor knockout mice. Life Sci. 2004 Oct 29;75(24):2959-70. doi: 10.1016/j.lfs.2004.06.006. PMID: 15454346.

  110. Morena M, Patel S, Bains JS, Hill MN (2016): Neurobiological Interactions Between Stress and the Endocannabinoid System. Neuropsychopharmacology. 2016 Jan;41(1):80-102. doi: 10.1038/npp.2015.166. PMID: 26068727; PMCID: PMC4677118. REVIEW

  111. Surkin PN, Gallino SL, Luce V, Correa F, Fernandez-Solari J, De Laurentiis A (2018): Pharmacological augmentation of endocannabinoid signaling reduces the neuroendocrine response to stress. Psychoneuroendocrinology. 2018 Jan;87:131-140. doi: 10.1016/j.psyneuen.2017.10.015. PMID: 29065362.

  112. Shimizu T, Lu L, Yokotani K (2010): Possible inhibitory roles of endogenous 2-arachidonoylglycerol during corticotropin-releasing factor-induced activation of central sympatho-adrenomedullary outflow in anesthetized rats. Eur J Pharmacol. 2010 Sep 1;641(1):54-60. doi: 10.1016/j.ejphar.2010.05.007. PMID: 20519139.

  113. Saber-Tehrani A, Naderi N, Hosseini Najarkolaei A, Haghparast A, Motamedi F (2010): Cannabinoids and their interactions with diazepam on modulation of serum corticosterone concentration in male mice. Neurochem Res. 2010 Jan;35(1):60-6. doi: 10.1007/s11064-009-0030-9. PMID: 19590959.

  114. Rabasa C, Pastor-Ciurana J, Delgado-Morales R, Gómez-Román A, Carrasco J, Gagliano H, García-Gutiérrez MS, Manzanares J, Armario A (2015): Evidence against a critical role of CB1 receptors in adaptation of the hypothalamic-pituitary-adrenal axis and other consequences of daily repeated stress. Eur Neuropsychopharmacol. 2015 Aug;25(8):1248-59. doi: 10.1016/j.euroneuro.2015.04.026. PMID: 26092203.

  115. Evanson NK, Tasker JG, Hill MN, Hillard CJ, Herman JP (2010): Fast feedback inhibition of the HPA axis by glucocorticoids is mediated by endocannabinoid signaling. Endocrinology. 2010 Oct;151(10):4811-9. doi: 10.1210/en.2010-0285. PMID: 20702575; PMCID: PMC2946139.

  116. Di S, Malcher-Lopes R, Halmos KC, Tasker JG (2003): Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J Neurosci. 2003 Jun 15;23(12):4850-7. doi: 10.1523/JNEUROSCI.23-12-04850.2003. PMID: 12832507; PMCID: PMC6741208.

  117. Ganon-Elazar E, Akirav I (2012): Cannabinoids prevent the development of behavioral and endocrine alterations in a rat model of intense stress. Neuropsychopharmacology. 2012 Jan;37(2):456-66. doi: 10.1038/npp.2011.204. PMID: 21918506; PMCID: PMC3242307.

  118. Murillo-Rodriguez E, Pastrana-Trejo JC, Salas-Crisóstomo M, de-la-Cruz M (2017): The Endocannabinoid System Modulating Levels of Consciousness, Emotions and Likely Dream Contents. CNS Neurol Disord Drug Targets. 2017;16(4):370-379. doi: 10.2174/1871527316666170223161908. PMID: 28240187. REVIEW

  119. Murillo-Rodríguez E, Sánchez-Alavez M, Navarro L, Martínez-González D, Drucker-Colín R, Prospéro-García O (1998): Anandamide modulates sleep and memory in rats. Brain Res. 1998 Nov 23;812(1-2):270-4. doi: 10.1016/s0006-8993(98)00969-x. PMID: 9813364.

  120. Murillo-Rodríguez E, Palomero-Rivero M, Millán-Aldaco D, Di Marzo V (2013): The administration of endocannabinoid uptake inhibitors OMDM-2 or VDM-11 promotes sleep and decreases extracellular levels of dopamine in rats. Physiol Behav. 2013 Jan 17;109:88-95. doi: 10.1016/j.physbeh.2012.11.007. PMID: 23238438.

  121. Hanlon EC, Tasali E, Leproult R, Stuhr KL, Doncheck E, de Wit H, Hillard CJ, Van Cauter E (2016): Sleep Restriction Enhances the Daily Rhythm of Circulating Levels of Endocannabinoid 2-Arachidonoylglycerol. Sleep. 2016 Mar 1;39(3):653-64. doi: 10.5665/sleep.5546. PMID: 26612385; PMCID: PMC4763355.

  122. Banister SD, Krishna Kumar K, Kumar V, Kobilka BK, Malhotra SV (2019): Selective modulation of the cannabinoid type 1 (CB1) receptor as an emerging platform for the treatment of neuropathic pain. Medchemcomm. 2019 Mar 18;10(5):647-659. doi: 10.1039/c8md00595h. PMID: 31191856; PMCID: PMC6533890. REVIEW

  123. Centonze D, Rossi S, Prosperetti C, Tscherter A, Bernardi G, Maccarrone M, Calabresi P (2005): Abnormal sensitivity to cannabinoid receptor stimulation might contribute to altered gamma-aminobutyric acid transmission in the striatum of R6/2 Huntington’s disease mice. Biol Psychiatry. 2005 Jun 15;57(12):1583-9. doi: 10.1016/j.biopsych.2005.03.008. PMID: 15953496.

  124. Kim J, Alger BE (2010): Reduction in endocannabinoid tone is a homeostatic mechanism for specific inhibitory synapses. Nat Neurosci. 2010 May;13(5):592-600. doi: 10.1038/nn.2517. PMID: 20348918; PMCID: PMC2860695.

  125. Justinová, Ferré, Redhi, Mascia, Stroik, Quarta, Yasar, Müller, Franco, Goldberg (2011): Reinforcing and neurochemical effects of cannabinoid CB1 receptor agonists, but not cocaine, are altered by an adenosine A2A receptor antagonist. Addict Biol. 2011 Jul;16(3):405-15. doi: 10.1111/j.1369-1600.2010.00258.x. PMID: 21054689; PMCID: PMC3115444.

  126. Scienza-Martin K, Lotz FN, Zanona QK, Santana-Kragelund F, Crestani AP, Boos FZ, Calcagnotto ME, Quillfeldt JA (2022): Memory Consolidation Depends on Endogenous Hippocampal Levels of Anandamide: CB1 and M4, but Possibly not TRPV1 Receptors Mediate AM404 effects. Neuroscience. 2022 Aug 10;497:53-72. doi: 10.1016/j.neuroscience.2022.04.009. PMID: 35436517.

  127. Cenni G, Blandina P, Mackie K, Nosi D, Formigli L, Giannoni P, Ballini C, Della Corte L, Mannaioni PF, Passani MB (2006): Differential effect of cannabinoid agonists and endocannabinoids on histamine release from distinct regions of the rat brain. Eur J Neurosci. 2006 Sep;24(6):1633-44. doi: 10.1111/j.1460-9568.2006.05046.x. PMID: 17004927; PMCID: PMC1769340.

  128. Béquet F, Uzabiaga F, Desbazeille M, Ludwiczak P, Maftouh M, Picard C, Scatton B, Le Fur G (2007): CB1 receptor-mediated control of the release of endocannabinoids (as assessed by microdialysis coupled with LC/MS) in the rat hypothalamus. Eur J Neurosci. 2007 Dec;26(12):3458-64. doi: 10.1111/j.1460-9568.2007.05900.x. PMID: 18052990.

  129. Kumar U (2024): Cannabinoids: Role in Neurological Diseases and Psychiatric Disorders. Int J Mol Sci. 2024 Dec 27;26(1):152. doi: 10.3390/ijms26010152. PMID: 39796008; PMCID: PMC11720483. REVIEW

  130. Oliver EE, Hughes EK, Puckett MK, Chen R, Lowther WT, Howlett AC (2020): Cannabinoid Receptor Interacting Protein 1a (CRIP1a) in Health and Disease. Biomolecules. 2020 Nov 27;10(12):1609. doi: 10.3390/biom10121609. PMID: 33261012; PMCID: PMC7761089. REVIEW

  131. Deshpande LS, DeLorenzo RJ (2011): Acetaminophen inhibits status epilepticus in cultured hippocampal neurons. Neuroreport. 2011 Jan 5;22(1):15-8. doi: 10.1097/WNR.0b013e3283413231. PMID: 21037491; PMCID: PMC3052417.

  132. Lastres-Becker I, Cebeira M, de Ceballos ML, Zeng BY, Jenner P, Ramos JA, Fernández-Ruiz JJ (2001): Increased cannabinoid CB1 receptor binding and activation of GTP-binding proteins in the basal ganglia of patients with Parkinson’s syndrome and of MPTP-treated marmosets. Eur J Neurosci. 2001 Dec;14(11):1827-32. doi: 10.1046/j.0953-816x.2001.01812.x. PMID: 11860478.

  133. Mailleux P, Vanderhaeghen JJ (1993): Dopaminergic regulation of cannabinoid receptor mRNA levels in the rat caudate-putamen: an in situ hybridization study. J Neurochem. 1993 Nov;61(5):1705-12. doi: 10.1111/j.1471-4159.1993.tb09807.x. PMID: 7901331.

  134. Romero J, Berrendero F, Pérez-Rosado A, Manzanares J, Rojo A, Fernández-Ruiz JJ, de Yebenes JG, Ramos JA (2000): Unilateral 6-hydroxydopamine lesions of nigrostriatal dopaminergic neurons increased CB1 receptor mRNA levels in the caudate-putamen. Life Sci. 2000;66(6):485-94. doi: 10.1016/s0024-3205(99)00618-9. PMID: 10794065.

  135. Gubellini P, Picconi B, Bari M, Battista N, Calabresi P, Centonze D, Bernardi G, Finazzi-Agrò A, Maccarrone M (2002): Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission. J Neurosci. 2002 Aug 15;22(16):6900-7. doi: 10.1523/JNEUROSCI.22-16-06900.2002. PMID: 12177188; PMCID: PMC6757864.

  136. Centonze D, Bari M, Di Michele B, Rossi S, Gasperi V, Pasini A, Battista N, Bernardi G, Curatolo P, Maccarrone M (2009): Altered anandamide degradation in attention-deficit/hyperactivity disorder. Neurology. 2009 Apr 28;72(17):1526-7. doi: 10.1212/WNL.0b013e3181a2e8f6. PMID: 19398708.

  137. Tzavara ET, Li DL, Moutsimilli L, Bisogno T, Di Marzo V, Phebus LA, Nomikos GG, Giros B (2006): Endocannabinoids activate transient receptor potential vanilloid 1 receptors to reduce hyperdopaminergia-related hyperactivity: therapeutic implications. Biol Psychiatry. 2006 Mar 15;59(6):508-15. doi: 10.1016/j.biopsych.2005.08.019. PMID: 16199010.

  138. Serrano M, Saumell-Esnaola M, Ocerin G, García Del Caño G, Puente N, Sallés J, Rodríguez de Fonseca F, Rodríguez-Arias M, Gerrikagoitia I, Grandes P (2024): Impact of Omega-3 on Endocannabinoid System Expression and Function, Enhancing Cognition and Behavior in Male Mice. Nutrients. 2024 Dec 17;16(24):4344. doi: 10.3390/nu16244344. PMID: 39770965; PMCID: PMC11676180.

  139. Almeida-Santos AF, Gobira PH, Rosa LC, Guimaraes FS, Moreira FA, Aguiar DC (2013): Modulation of anxiety-like behavior by the endocannabinoid 2-arachidonoylglycerol (2-AG) in the dorsolateral periaqueductal gray. Behav Brain Res. 2013 Sep 1;252:10-7. doi: 10.1016/j.bbr.2013.05.027. PMID: 23714073.

  140. Shimizu T, Lu L, Yokotani K (2011): Endogenously generated 2-arachidonoylglycerol plays an inhibitory role in bombesin-induced activation of central adrenomedullary outflow in rats. Eur J Pharmacol. 2011 May 11;658(2-3):123-31. doi: 10.1016/j.ejphar.2011.02.023. PMID: 21371452.

  141. La Porta C, Bura SA, Llorente-Onaindia J, Pastor A, Navarrete F, García-Gutiérrez MS, De la Torre R, Manzanares J, Monfort J, Maldonado R (2015): Role of the endocannabinoid system in the emotional manifestations of osteoarthritis pain. Pain. 2015 Oct;156(10):2001-2012. doi: 10.1097/j.pain.0000000000000260. PMID: 26067584; PMCID: PMC4770330.

  142. Peters KZ, Oleson EB, Cheer JF (2021): A Brain on Cannabinoids: The Role of Dopamine Release in Reward Seeking and Addiction. Cold Spring Harb Perspect Med. 2021 Jan 4;11(1):a039305. doi: 10.1101/cshperspect.a039305. PMID: 31964646; PMCID: PMC7778214. REVIEW

  143. Lu HC, Mackie K (2016): An Introduction to the Endogenous Cannabinoid System. Biol Psychiatry. 2016 Apr 1;79(7):516-25. doi: 10.1016/j.biopsych.2015.07.028. PMID: 26698193; PMCID: PMC4789136. REVIEW

  144. Kelley BG, Thayer SA (2004): Delta 9-tetrahydrocannabinol antagonizes endocannabinoid modulation of synaptic transmission between hippocampal neurons in culture. Neuropharmacology. 2004 Apr;46(5):709-15. doi: 10.1016/j.neuropharm.2003.11.005. PMID: 14996548.

  145. Straiker A, Mackie K (2005): Depolarization-induced suppression of excitation in murine autaptic hippocampal neurones. J Physiol. 2005 Dec 1;569(Pt 2):501-17. doi: 10.1113/jphysiol.2005.091918. PMID: 16179366; PMCID: PMC1464237.

  146. De Vry J, Denzer D, Reissmueller E, Eijckenboom M, Heil M, Meier H, Mauler F (2004): 3-[2-cyano-3-(trifluoromethyl)phenoxy]phenyl-4,4,4-trifluoro-1-butanesulfonate (BAY 59-3074): a novel cannabinoid Cb1/Cb2 receptor partial agonist with antihyperalgesic and antiallodynic effects. J Pharmacol Exp Ther. 2004 Aug;310(2):620-32. doi: 10.1124/jpet.103.062836. PMID: 15140913.

  147. Korte G, Dreiseitel A, Schreier P, Oehme A, Locher S, Geiger S, Heilmann J, Sand PG (2010): Tea catechins’ affinity for human cannabinoid receptors. Phytomedicine. 2010 Jan;17(1):19-22. doi: 10.1016/j.phymed.2009.10.001. PMID: 19897346.

  148. Zaniewska M, McCreary AC, Przegaliński E, Filip M (2006): Evaluation of the role of nicotinic acetylcholine receptor subtypes and cannabinoid system in the discriminative stimulus effects of nicotine in rats. Eur J Pharmacol. 2006 Jul 1;540(1-3):96-106. doi: 10.1016/j.ejphar.2006.04.034. PMID: 16730696.

  149. Dodd GT, Stark JA, McKie S, Williams SR, Luckman SM (2009): Central cannabinoid signaling mediating food intake: a pharmacological-challenge magnetic resonance imaging and functional histology study in rat. Neuroscience. 2009 Nov 10;163(4):1192-200. doi: 10.1016/j.neuroscience.2009.07.022. PMID: 19607884.

  150. Brunt TM, Bossong MG (2022): The neuropharmacology of cannabinoid receptor ligands in central signaling pathways. Eur J Neurosci. 2022 Feb;55(4):909-921. doi: 10.1111/ejn.14982. PMID: 32974975; PMCID: PMC9291836. REVIEW

  151. Sumariwalla PF, Gallily R, Tchilibon S, Fride E, Mechoulam R, Feldmann M (2004): A novel synthetic, nonpsychoactive cannabinoid acid (HU-320) with antiinflammatory properties in murine collagen-induced arthritis. Arthritis Rheum. 2004 Mar;50(3):985-98. doi: 10.1002/art.20050. PMID: 15022343.

  152. Bloomfield MA, Ashok AH, Volkow ND, Howes OD (2016): The effects of Δ9-tetrahydrocannabinol on the dopamine system. Nature. 2016 Nov 17;539(7629):369-377. doi: 10.1038/nature20153. PMID: 27853201; PMCID: PMC5123717. REVIEW

  153. Hollister LE, Gillespie HK (1975): Action of delta-9-tetrahydrocannabinol. An approach to the active metabolite hypothesis. Clin Pharmacol Ther. 1975 Dec;18(6):714-9. doi: 10.1002/cpt1975186714. PMID: 1204277.

  154. Ligresti A, Villano R, Allarà M, Ujváry I, Di Marzo V (2012): Kavalactones and the endocannabinoid system: the plant-derived yangonin is a novel CB₁ receptor ligand. Pharmacol Res. 2012 Aug;66(2):163-9. doi: 10.1016/j.phrs.2012.04.003. PMID: 22525682.

  155. Gianessi CA, Groman SM, Thompson SL, Jiang M, van der Stelt M, Taylor JR (2020): Endocannabinoid contributions to alcohol habits and motivation: Relevance to treatment. Addict Biol. 2020 May;25(3):e12768. doi: 10.1111/adb.12768. PMID: 31056846; PMCID: PMC7790504.

  156. Sink KS, McLaughlin PJ, Wood JA, Brown C, Fan P, Vemuri VK, Peng Y, Olszewska T, Thakur GA, Makriyannis A, Parker LA, Salamone JD (2008): The novel cannabinoid CB1 receptor neutral antagonist AM4113 suppresses food intake and food-reinforced behavior but does not induce signs of nausea in rats. Neuropsychopharmacology. 2008 Mar;33(4):946-55. doi: 10.1038/sj.npp.1301476. PMID: 17581535; PMCID: PMC3711240.

  157. Sink KS, Vemuri VK, Wood J, Makriyannis A, Salamone JD (6527): Oral bioavailability of the novel cannabinoid CB1 antagonist AM6527: effects on food-reinforced behavior and comparisons with AM4113. Pharmacol Biochem Behav. 2009 Jan;91(3):303-6. doi: 10.1016/j.pbb.2008.07.013. PMID: 18703081; PMCID: PMC2806679.

  158. Pavón FJ, Serrano A, Pérez-Valero V, Jagerovic N, Hernández-Folgado L, Bermúdez-Silva FJ, Macías M, Goya P, de Fonseca FR (2008): Central versus peripheral antagonism of cannabinoid CB1 receptor in obesity: effects of LH-21, a peripherally acting neutral cannabinoid receptor antagonist, in Zucker rats. J Neuroendocrinol. 2008 May;20 Suppl 1:116-23. doi: 10.1111/j.1365-2826.2008.01693.x. PMID: 18426510. REVIEW

  159. Pandolfo, Silveirinha, dos Santos-Rodrigues, Venance, Ledent, Takahashi, Cunha, Köfalvi (2011): Cannabinoids inhibit the synaptic uptake of adenosine and dopamine in the rat and mouse striatum. Eur J Pharmacol. 2011 Mar 25;655(1-3):38-45. doi: 10.1016/j.ejphar.2011.01.013. PMID: 21266173.

  160. Porter AC, Sauer JM, Knierman MD, Becker GW, Berna MJ, Bao J, Nomikos GG, Carter P, Bymaster FP, Leese AB, Felder CC (2002): Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther. 2002 Jun;301(3):1020-4. doi: 10.1124/jpet.301.3.1020. PMID: 12023533.

  161. Diana M, Melis M, Gessa GL (1998): Increase in meso-prefrontal dopaminergic activity after stimulation of CB1 receptors by cannabinoids. Eur J Neurosci. 1998 Sep;10(9):2825-30. doi: 10.1111/j.1460-9568.1998.00292.x. PMID: 9758152.

  162. Calignano A, La Rana G, Beltramo M, Makriyannis A, Piomelli D (1997): Potentiation of anandamide hypotension by the transport inhibitor, AM404. Eur J Pharmacol. 1997 Oct 15;337(1):R1-2. doi: 10.1016/s0014-2999(97)01297-1. PMID: 9389389.

  163. Pistis M, Muntoni AL, Pillolla G, Gessa GL (2002): Cannabinoids inhibit excitatory inputs to neurons in the shell of the nucleus accumbens: an in vivo electrophysiological study. Eur J Neurosci. 2002 Jun;15(11):1795-802. doi: 10.1046/j.1460-9568.2002.02019.x. PMID: 12081659.

  164. Fride E, Braun H, Matan H, Steinberg S, Reggio PH, Seltzman HH (2007): Inhibition of milk ingestion and growth after administration of a neutral cannabinoid CB1 receptor antagonist on the first postnatal day in the mouse. Pediatr Res. 2007 Nov;62(5):533-6. doi: 10.1203/PDR.0b013e3181559d42. PMID: 17805201.

  165. Navarro HA, Howard JL, Pollard GT, Carroll FI (2009): Positive allosteric modulation of the human cannabinoid (CB) receptor by RTI-371, a selective inhibitor of the dopamine transporter. Br J Pharmacol. 2009 Apr;156(7):1178-84. doi: 10.1111/j.1476-5381.2009.00124.x. PMID: 19226282; PMCID: PMC2697692.

  166. Nguyen T, German N, Decker AM, Li JX, Wiley JL, Thomas BF, Kenakin TP, Zhang Y (2015): Structure-activity relationships of substituted 1H-indole-2-carboxamides as CB1 receptor allosteric modulators. Bioorg Med Chem. 2015 May 1;23(9):2195-2203. doi: 10.1016/j.bmc.2015.02.058. PMID: 25797163; PMCID: PMC4547606.

  167. Blume LC, Eldeeb K, Bass CE, Selley DE, Howlett AC (2015): Cannabinoid receptor interacting protein (CRIP1a) attenuates CB1R signaling in neuronal cells. Cell Signal. 2015 Mar;27(3):716-726. doi: 10.1016/j.cellsig.2014.11.006. PMID: 25446256; PMCID: PMC4332989.

  168. Zhang HY, Bi GH, Li X, Li J, Qu H, Zhang SJ, Li CY, Onaivi ES, Gardner EL, Xi ZX, Liu QR (2015): Species differences in cannabinoid receptor 2 and receptor responses to cocaine self-administration in mice and rats. Neuropsychopharmacology. 2015 Mar;40(4):1037-51. doi: 10.1038/npp.2014.297. PMID: 25374096; PMCID: PMC4330519.

  169. Stempel AV, Stumpf A, Zhang HY, Özdoğan T, Pannasch U, Theis AK, Otte DM, Wojtalla A, Rácz I, Ponomarenko A, Xi ZX, Zimmer A, Schmitz D (2016): Cannabinoid Type 2 Receptors Mediate a Cell Type-Specific Plasticity in the Hippocampus. Neuron. 2016 May 18;90(4):795-809. doi: 10.1016/j.neuron.2016.03.034. PMID: 27133464; PMCID: PMC5533103.

  170. Facci L, Dal Toso R, Romanello S, Buriani A, Skaper SD, Leon A (1995): Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3376-80. doi: 10.1073/pnas.92.8.3376. PMID: 7724569; PMCID: PMC42169.

  171. García-Gutiérrez MS, García-Bueno B, Zoppi S, Leza JC, Manzanares J (2012): Chronic blockade of cannabinoid CB2 receptors induces anxiolytic-like actions associated with alterations in GABA(A) receptors. Br J Pharmacol. 2012 Feb;165(4):951-64. doi: 10.1111/j.1476-5381.2011.01625.x. PMID: 21838753; PMCID: PMC3312491.

  172. Ma Z, Gao F, Larsen B, Gao M, Luo Z, Chen D, Ma X, Qiu S, Zhou Y, Xie J, Xi ZX, Wu J (2019): Mechanisms of cannabinoid CB2 receptor-mediated reduction of dopamine neuronal excitability in mouse ventral tegmental area. EBioMedicine. 2019 Apr;42:225-237. doi: 10.1016/j.ebiom.2019.03.040. PMID: 30952618; PMCID: PMC6491419.

  173. Zhang HY, Gao M, Shen H, Bi GH, Yang HJ, Liu QR, Wu J, Gardner EL, Bonci A, Xi ZX (2017): Expression of functional cannabinoid CB2 receptor in VTA dopamine neurons in rats. Addict Biol. 2017 May;22(3):752-765. doi: 10.1111/adb.12367. PMID: 26833913; PMCID: PMC4969232.

  174. Zhang HY, Gao M, Liu QR, Bi GH, Li X, Yang HJ, Gardner EL, Wu J, Xi ZX (2014): Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):E5007-15. doi: 10.1073/pnas.1413210111. PMID: 25368177; PMCID: PMC4246322.

  175. Atwood BK, Wager-Miller J, Haskins C, Straiker A, Mackie K (2012): Functional selectivity in CB(2) cannabinoid receptor signaling and regulation: implications for the therapeutic potential of CB(2) ligands. Mol Pharmacol. 2012 Feb;81(2):250-63. doi: 10.1124/mol.111.074013. PMID: 22064678; PMCID: PMC3263955.

  176. Raduner S, Majewska A, Chen JZ, Xie XQ, Hamon J, Faller B, Altmann KH, Gertsch J (2006): Alkylamides from Echinacea are a new class of cannabinomimetics. Cannabinoid type 2 receptor-dependent and -independent immunomodulatory effects. J Biol Chem. 2006 May 19;281(20):14192-206. doi: 10.1074/jbc.M601074200. PMID: 16547349.

  177. Gertsch J, Leonti M, Raduner S, Racz I, Chen JZ, Xie XQ, Altmann KH, Karsak M, Zimmer A (2008): Beta-caryophyllene is a dietary cannabinoid. Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):9099-104. doi: 10.1073/pnas.0803601105. PMID: 18574142; PMCID: PMC2449371.

  178. Roche M, Kelly JP, O’Driscoll M, Finn DP (2008): Augmentation of endogenous cannabinoid tone modulates lipopolysaccharide-induced alterations in circulating cytokine levels in rats. Immunology. 2008 Oct;125(2):263-71. doi: 10.1111/j.1365-2567.2008.02838.x. PMID: 18393970; PMCID: PMC2561133.

  179. Yao BB, Hsieh G, Daza AV, Fan Y, Grayson GK, Garrison TR, El Kouhen O, Hooker BA, Pai M, Wensink EJ, Salyers AK, Chandran P, Zhu CZ, Zhong C, Ryther K, Gallagher ME, Chin CL, Tovcimak AE, Hradil VP, Fox GB, Dart MJ, Honore P, Meyer MD (2009): Characterization of a cannabinoid CB2 receptor-selective agonist, A-836339 [2,2,3,3-tetramethyl-cyclopropanecarboxylic acid [3-(2-methoxy-ethyl)-4,5-dimethyl-3H-thiazol-(2Z)-ylidene]-amide], using in vitro pharmacological assays, in vivo pain models, and pharmacological magnetic resonance imaging. J Pharmacol Exp Ther. 2009 Jan;328(1):141-51. doi: 10.1124/jpet.108.145011. PMID: 18931146.

  180. Dos Santos Barbosa LA, Dutra RC, Moreira ELG, de Carvalho CR (2023): β-caryophyllene, a cannabinoid receptor 2 agonist, decreases the motivational salience and conditioning place preference for palatable food in female mice. Addict Biol. 2023 Jan;28(1):e13249. doi: 10.1111/adb.13249. PMID: 36577722.

  181. Galaj E, Bi GH, Moore A, Chen K, He Y, Gardner E, Xi ZX (2021): Beta-caryophyllene inhibits cocaine addiction-related behavior by activation of PPARα and PPARγ: repurposing a FDA-approved food additive for cocaine use disorder. Neuropsychopharmacology. 2021 Mar;46(4):860-870. doi: 10.1038/s41386-020-00885-4. PMID: 33069159; PMCID: PMC8026612.

  182. Tiberi M, Evron T, Saracini S, Boffa L, Mercuri NB, Chintalacharuvu SR, Atamas SP, Chiurchiù V (2022): Potent T cell-mediated anti-inflammatory role of the selective CB2 agonist lenabasum in multiple sclerosis. Neuropathol Appl Neurobiol. 2022 Feb;48(2):e12768. doi: 10.1111/nan.12768. PMID: 34543449.

  183. Burstein SH, Karst M, Schneider U, Zurier RB (2004): Ajulemic acid: A novel cannabinoid produces analgesia without a “high”. Life Sci. 2004 Aug 6;75(12):1513-22. doi: 10.1016/j.lfs.2004.04.010. PMID: 15240185. REVIEW

  184. Hu B, Doods H, Treede RD, Ceci A (2009): Depression-like behaviour in rats with mononeuropathy is reduced by the CB2-selective agonist GW405833. Pain. 2009 Jun;143(3):206-212. doi: 10.1016/j.pain.2009.02.018. PMID: 19345493.

  185. La Porta C, Bura SA, Llorente-Onaindia J, Pastor A, Navarrete F, García-Gutiérrez MS, De la Torre R, Manzanares J, Monfort J, Maldonado R (2015): Role of the endocannabinoid system in the e. motional manifestations of osteoarthritis pain. Pain. 2015 Oct;156(10):2001-2012. doi: 10.1097/j.pain.0000000000000260. PMID: 26067584; PMCID: PMC4770330.

  186. Grether U, Foxton RH, Gruener S, Korn C, Kimbara A, Osterwald A, Zirwes E, Uhles S, Thoele J, Colé N, Rogers-Evans M, Röver S, Nettekoven M, Martin RE, Adam JM, Fingerle J, Bissantz C, Guba W, Alker A, Szczesniak AM, Porter RF, Toguri TJ, Revelant F, Poirier A, Perret C, Winther L, Caruso A, Fezza F, Maccarrone M, Kelly MEM, Fauser S, Ullmer C (2024): RG7774 (Vicasinabin), an orally bioavailable cannabinoid receptor 2 (CB2R) agonist, decreases retinal vascular permeability, leukocyte adhesion, and ocular inflammation in animal models. Front Pharmacol. 2024 Jul 12;15:1426446. doi: 10.3389/fphar.2024.1426446. PMID: 39070793; PMCID: PMC11272598.

  187. Armendariz BG, Luhman UFO, Berger B, Hernandez-Sanchez J, Bogman K, Mitrousis N, Wollenhaupt M, Kent D, Wenzel A, Fauser S (2024): CANBERRA: A Phase II Randomized Clinical Trial to Test the Therapeutic Potential of Oral Vicasinabin in Diabetic Retinopathy. Ophthalmol Sci. 2024 Nov 8;5(2):100650. doi: 10.1016/j.xops.2024.100650. PMID: 39802207; PMCID: PMC11719906.

  188. Ryberg E, Larsson N, Sjögren S, Hjorth S, Hermansson NO, Leonova J, Elebring T, Nilsson K, Drmota T, Greasley PJ (2007): The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol. 2007 Dec;152(7):1092-101. doi: 10.1038/sj.bjp.0707460. PMID: 17876302; PMCID: PMC2095107.

  189. Tsao P, von Zastrow M (2000): Downregulation of G protein-coupled receptors. Curr Opin Neurobiol. 2000 Jun;10(3):365-9. doi: 10.1016/s0959-4388(00)00096-9. PMID: 10851176. REVIEW

  190. von Zastrow M (2003): Mechanisms regulating membrane trafficking of G protein-coupled receptors in the endocytic pathway. Life Sci. 2003 Dec 5;74(2-3):217-24. doi: 10.1016/j.lfs.2003.09.008. PMID: 14607249. REVIEW

  191. Hanyaloglu AC, von Zastrow M (2008): Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu Rev Pharmacol Toxicol. 2008;48:537-68. doi: 10.1146/annurev.pharmtox.48.113006.094830. PMID: 18184106. REVIEW

Diese Seite wurde am 24.05.2025 zuletzt aktualisiert.