Header Image
What is regulated by cannabinoids

Sitemap

What is regulated by cannabinoids

Since cannabinoids, unlike most neurotransmitters, act retrogradely (synthesis and release at the postsynapse, effect on receptors at the presynapse), they have a strong regulatory effect on other neurotransmitter systems.
The cannabinoid THC indirectly increases dopamine release and dopaminergic firing in the brain during acute consumption. Long-term use reduces dopaminergic levels.1 THC does not act directly on dopamine neurons, but indirectly via cannabinoid receptors. These are found in many areas of the brain that have dopamine neurons.

Endocannabinoids are released from brain neurons when triggered by2

  • depolarization-related increase in the intracellular Ca2+ concentration
  • Activation of a group I metabotropic glutamate receptor (mGluR1, mGluR5)
    • e.g. in cortex, striatum, nucleus accumbens, hippocampus, VTA3

Endocannabinoids bind retrogradely to presynaptic cannabinoid receptors. They are then rapidly degraded.

Endocannabinoids also influence45

  • Brain development
  • synaptic plasticity
  • Reaction to endogenous and environmental stimuli.

1. Cannabinoids influence neurotransmitter systems

1.1. Cannabinoids regulate dopamine

See the articles Cannabinoids regulate dopamine And Cannabinoids also regulate appetite and food intake via dopamine

1.2. Cannabinoids regulate acetylcholine (ACh) via dopamine

Dopamine controls the release of acetylcholine in the hippocampus and PFC.3

  • D2R agonists reduce ACh in the hippocampus6
  • D1R agonists increase ACh in the hippocampus67 and PFC8
  • CB1 agonists9
    • low doses increase ACh in hippocampus and PFC10
      • possibly via D1R, which are located in the septum311
    • high doses reduce ACh in the hippocampus and PFC12
      • via hippocampal D2R3
  • A CB1R antagonist increases ACh in hippocampus and PFC9

1.3. Cannabinoids regulate noradrenaline

Endocannabinoids influence the noradrenergic system.41314

  • CB1R agonists inhibit the noradrenaline system and interfere with attention processes.14
  • Cannabinoids alter the release of noradrenaline in14
    • PFC
    • Locus coeruleus
    • Hippocampus
    • Hypothalamus
    • Cerebellum
  • FAAH inhibitors increase noradrenergic firing in the nucleus coeruleus15
  • CB1R is found in moderate amounts of mRNA in the noradrenergic nuclei locus coeruleus (66% somatodendritic, 22% in axon terminals, 12% in glia and small, non-myelinated axon-like structures) and NTS16
  • The CB1R agonists WIN 55212-2, CP 55940 and THC increase the spontaneous firing rate of neurons in the locus coeruleus in a dose-dependent manner1718
    • Possibly due to the activation of CB1R in the prepositus hypoglossi and not to the activation of CB1R in the LC
  • CB1R antagonists can increase the release of noradrenaline, e.g. in:14
    • PFC
    • Hypothalamus
  • The CB1R antagonist rimonabant reduces the firing rate of noradrenergic neurons in the LC18
  • Cannabinoids can reduce the phasic activity of locus coeruleus neurons via glutamate13
  • Anandamide and the synthetic cannabinoid HU210 reduced the perivascular nerve stimulation (PNS)-induced norepinephrine release of the rat heart Langendorff preparation. 2-AG in the presence of DFP and indomethacin increased PNS-induced norepinephrine release, which was completely blocked by AM251.19

The endocannabinoid system regulates stress responses and emotional homeostasis by influencing noradrenergic circuits.20

1.4. Cannabinoids regulate serotonin

Endocannabinoids influence the serotonergic system.413 Endocannabinoids can regulate the efficiency of serotonergic neurotransmission not only by inhibiting serotonin release, but also (at least peripherally) by inhibiting serotonin reuptake.21

CB1Rs are also found on serotonergic neurons in the substantia nigra and the raphe nuclei.22

  • Serotonin increasing:

    • CB1R agonists
      • Inhibit serotonergic activity in dorsal raphe nuclei, CB1R antagonists increase it.23
      • The CB1R agonist THC, given systemically, increases 5-HT levels in rats24
    • CB1R antagonists increase serotonin release in the PFC14
    • WIN 55212-2 at low dose increases, at high dose decreases spontaneous firing of 5-HT neurons in the dorsal raphe nucleus (DRN)25
    • CB1R agonists such as WIN 55212-2 and CP 55940 increase 5-HT efflux in the nucleus accumbens by inhibiting GABAergic interneurons in the DRN via CB1R; 5-HT in the DRN remained unchanged2627
    • A FAAH inhibitor promotes the activity of 5-HT neurons in the DRN15
    • FAAH-KO mice showed28
      • Increased 5-HT firing in the dorsal raphe nuclei
      • Desensitized 5-HT(2A/2C) receptors in the PFC
      • Increased tone at the 5-HT(1A) heteroreceptors of the hippocampus
  • Reducing serotonin

    • CB1R agonists inhibit the release of serotonin in the PFC14
    • CB1R agonists inhibit serotonergic activity in dorsal raphe nuclei, CB1R antagonists increase it.23
    • THC reduces the 5-HT level in the ventral hippocampus29
    • THC reduces 5-HT levels in the nucleus accumbens via activated glutamate neurons30
    • WIN55212-2 and R-methanandamide reduced 5-HT release in the frontal cortex31
    • Show CB1R-KO mice32
      • Increased basal extracellular 5-HT levels in the PFC
      • An attenuated fluoxetine-induced increase in extracellular 5-HT levels in the PFC
      • A significant reduction in the density of 5-HT transporter binding sites in the PFC and hippocampus
      • Altered 5-HT receptors:
        • Functional desensitization of the 5-HT(1A) autoreceptor
        • Reduced expression of the 5-HT(2C) receptor in dorsal raphe nuclei, nucleus accumbens and the paraventricular nucleus of the hypothalamus, all of which are associated with the control of emotional responses
        • Increased expression of the 5-HT(2C) receptor in the CA3 area of the ventral hippocampus

1.5. Cannabinoids regulate GABA

For the significant influence of cannabinoids on dopamine via the GABA pathway, see the article Cannabinoids regulate dopamine

  • Endocannabinoids influence the GABAergic system.4
    • via CB1R actually inhibition of GABA neurons (significant inhibition of evoked and spontaneous GABA-mediated synaptic events33.)
      • Consequences: less inhibition of dopamine neurons. As a result, cannabinoids indirectly increase dopamine levels.
      • However, the synthetic CB1R agonist HU210 caused a significant increase in GABA release34
        • Either CB1Rs can promote the release of transmitters under certain circumstances, or HU210 mediates its effects via other pathways than CB1Rs

1.6. Cannabinoids regulate glutamate

For the significant influence of cannabinoids on dopamine via the glutamate pathway, see the article Cannabinoids regulate dopamine

CB1R mediates glutamatergic synaptic suppression in the hippocampus.35
The CB1R agonist THC increased extracellular glutamate levels in the nucleus accumbens shell, VTA and mPFC.36
Repeated administration of THC or synthetic cannabinoids reduced the expression of glutamate AMPA and NMDA receptors in the rat cerebellum.14

1.7. Cannabinoids influence opioid system (?)

The analgesic effects of CBR agonists are mediated by the release of endogenous opioids. CBR agonists triggered the release of the opioid dynorphin B in the spinal cord of rats. The CB1R antagonist AM251 reversed the analgesic effect of morphine. CBR agonists enhance the rewarding properties of opioids such as morphine and heroin.14

1.8. Biphasic dose-dependent effect of cannabinoids

Cannabinoid agonists often act differently in the forebrain in vivo depending on the dose.3
High doses are approx. one order of magnitude (one decimal place, ten times) higher than low doses.

  • CB1R agonists on acetylcholine: (see above)9
    • low doses increase ACh in hippocampus and PFC
      • via septal D1R
    • high doses reduce ACh in hippocampus and PFC
      • via hippocampal D2R
    • with a constant amplitude of dopamine release3
    • with a constant increase in postsynaptic dopamine-dependent protein phosphorylation3
  • 2-deoxyglycose utilization in the hippocampus3
    • low dose: stimulating
    • high dose: inhibitory
  • cortically evoked potentials3
    • low dose: stimulating
    • high dose: inhibitory
  • Locomotion3
    • low dose: stimulating
    • high dose: inhibitory
  • CB1R agonists on glutamate in the PFC37
    • low doses (0.1 and 1 mg/kg i.p.) increase glutamate
    • slightly higher dose (2 mg/kg) leaves glutamate unchanged
    • possibly because CB1Rs in presynapses of GABAergic interneurons (which control network activity) are more sensitive (and therefore respond at lower doses) than CB1Rs in pyramidal cortical neurons, which control net efflux towards reduced glutamate activity3

2. Cannabinoids influence behavior

2.1. Cannabinoids influence the energy balance of the brain

The Energy deficit hypothesis Explains ADHD with a lack of energy in the brain.

CB1Rs are also found on mitochondria.
Mitochondria regulate the energy balance in the brain via parvalbumin interneurons, among others. Brain regions rich in CB1Rs regulate excitatory/inhibitory activity and the balance between them.38
Anandamide reduces calcium sensitivity and impairs membrane properties in mitochondria.39

2.2. Cannabinoids influence social behavior

Social play increased AEA in the amygdala and nucleus accumbens, not in the PFC or hippocampus, and increased CB1R phosphorylation in the amygdala.40

With regard to the effect of cannabinoids on social play and social behavior, a distinction must be made between endocannabinoids and externally supplied CB1R agonists.41

Externally administered CB1R agonists reduced social play:

  • The CB1R agonist WIN55,212-2
    • reduced social play42, namely the request to play as well as the reaction to requests to play43
    • during adolescence as in adulthood44
    • reduces the time of social interaction in rats during adulthood
    • caused persistent deficits in social contacts, social behavior, social play, object recognition and self-care
  • The CB1R agonist THC
    • Chronic gift reduced social play45
    • chronic administration causes a reduction in social behavior, sexual behavior, nest-building behavior and litter size and increased non-social activity in mice46
    • in childhood caused decreased social exploratory behavior and increased social play in adult rats47
    • THC smoking in pregnant rat mothers caused less social exploratory behavior in adolescent male offspring and less exploratory behavior in adult offspring, and dose-dependently reduced behavioral flexibility48
    • acute causes general sedation in mice46
    • perinatal administration of THC causes41
      • in rats
        • impaired social interaction and play behavior in adulthood
      • only for girls, not for boys49
        • reduced playing time in childhood
        • increased risk of aggressive behavior
        • increased attention problems
    • prenatally, the CBR agonist WIN55,212-2 reduced isolation-induced ultrasonic sounds and increased locomotor activity in males only. Administration of the positive allosteric modulator of the mGlu5 receptor CDPPB to the pups corrected this. Prepubertal and pubertal social play behavior, anxiety and temporal order memory of the rats remained unchanged by WIN55,212-2.

An externally administered CB1R antagonist reduced social play:

  • The CB1R antagonist rimonabant reduced social play50

Reinforcement of endocannabinoids predominantly increases social play.

  • The FAAH inhibitor URB597 and the reuptake inhibitor VDM11 increased AEA in the amygdala, but not in the nucleus accumbens, and increased social play40 via opioid and dopamine receptors42
  • The FAAH inhibitor URB597 increased social play depending on the social activity of the play partner43
  • The opioid agonist morphine increased social play independent of the social activity of the play partner43, whereas the CB1R antagonist rimonabant suppressed this, independent of dopamine receptors.42 Pretreatment with the 2-AG depletion inhibitor JZL184 or the cannabinoid agonist WIN55,212-2 did not inhibit this.51
  • A combination of URB597 and morphine doses, each of which was ineffective alone, increased social play.42
  • The 2-AG depletion inhibitor JZL184 promoted social play and increased CB1R activation in the nucleus accumbens and PFC, both of which were suppressed by pretreatment with the opioid receptor agonist morphine51
  • The 2-AG degradation inhibitor MJN110 influenced aggressive grooming in socially isolated rats52
  • The selective AEA reuptake inhibitor VDM11 increased social play, which was prevented by the CB1R antagonist rimonabant, the opioid receptor antagonist naloxone and the dopamine receptor antagonist alpha-flupenthixol.53
  • The AEA and 2-AG depletion inhibitor JZL195 (0.1 mg/kg) increased social play behavior, the most characteristic social activity of adolescent rats, and increased social interaction in adult animals. The CB1R antagonist rimonabant inhibited this and led to increased 2-AG and unchanged AEA in the brain54
  • JZL195 (1 mg/kg) increased general social exploration in adolescent rats without affecting social play and induced anxiety-like effects in both adolescent and adult animals in the elevated plus maze test via CB1R. This correlated with elevated brain AEA and 2-AG in adolescent rats and only elevated 2-AG in adult animals.54
  • However, the less selective AEA reuptake inhibitor AM404 reduced social play without the CB1R antagonist rimonabant, the CB2R antagonist SR144528 or the TRPV1 antagonist capsazepine preventing it.53
  • The FAAH inhibitor URB59755
    • increased social play behavior in adolescent Wistar rats under all experimental conditions
    • did not affect play and social behavior in Sprague-Dawley rats under any experimental condition
    • elevated 50 kHz USVs during social interaction in juvenile Wistar and adult Sprague-Dawley rats
    • AEA modulates social play in juvenile rats in a load-dependent but not a context-dependent manner. AEA modulation of social behavior and 50 kHz ultrasonic sounds in adults is load- and context-dependent.

Juvenile and adult Sprague-Dawley rats show more social behavior and 50 kHz ultrasonic sounds than Wistar rats. This could explain contradictory results on the effects of cannabinoid drugs on emotionality in different rodent strains.55

In juvenile rats, encounters with unfamiliar rats increased AEA levels in the striatum. AEA remained unchanged in other brain regions, 2-AG and FAAH remained unchanged overall,56

Pathway of action of reduced social behavior due to external CB1R agonists or CB1R overexpression in mPFC appears to be a disorder of cognitive function (e.g., behavioral flexibility) and emotional reactivity, which may be caused by endocannabinoid-induced alteration of dopaminergic, cholinergic, and serotonergic transmission in PFC5758 , both of which are required for appropriate social interactions59

The positive effects of indirect CB1R agonists on social play appear to be mediated via dopamine and endoopioids, as they can be blocked by dopamine or μ-opioid receptor antagonists. Conversely, the game-promoting effects of opioid agonists can be attenuated by either opioid receptor or CB1R antagonists.4341 Dopamine is involved in the facilitative effects of indirect cannabinoid agonists on social play.43 In contrast, dopamine is not involved in the play–stimulating effects of morphine.43
Endocannabinoids activate mesolimbic dopamine transmission, which is significantly involved in the modulation of social play.60616263

In humans, CB1R gene variants influence the recognition of happy faces, social reward sensitivity through reward-related forebrain areas and thus social behavior.64

Methylphenidate and atomoxetine reduce social play in rats.65 This occurred when MPH was administered in the ACC, infralimbic cortex, basolateral amygdala or habenula, but not in the prelimbic, medial/ventral orbitofrontal or ventrolateral orbitofrontal cortex, mediodorsal thalamus or nucleus accumbens. The cause appears to be noradrenergic mechanisms in the PFC.6667
We hypothesize that this may provide a neurophysiological explanation for the reported “zombie” effects of methylphenidate (usually when the dosage is too high or rarely when the person with ADHD is hypersensitive).

2.3. Cannabinoids regulate executive functions and cognitive flexibility

In n = 157 women were found:68

  • AEA correlates positively with cognitive flexibility and decision-making ability
  • 2-AG correlated negatively with cognitive flexibility
  • Neither AEA nor 2-AG correlated with impulse inhibition

2.4. Cannabinoids regulate depression

Endocannabinoids are reduced in depression.697071
- 2-AG is reduced in severe depression7273
- 2-AG tends to be elevated in mild depression72
- MAGL inhibitors (which inhibit 2-AG degradation) have an antidepressant effect74

The CB2R agonist β-caryophyllene improved all symptoms of depression induced by the Novelty Suppressed Feeding Test, the Tail Suspension Test and the Forced Swim Test in adult mice. Prior administration of the CB2R antagonist AM630 completely abolished the antidepressant effect75

Chronic administration of the synthetic CB2R agonist HU210 showed an antidepressant effect.76 The antidepressant effect was as strong as that of desimipramine.77

Systemic administration of CB1R agonists and FAAH inhibitors has been shown to have an antidepressant effect. Local enhancement of CB1R signaling in the dorsal hippocampus triggers an antidepressant effect78

2.5. Cannabinoids regulate anxiety

Endocannabinoids are reduced in anxiety disorders.79
- AEA is reduced73

The CB2R agonist β-caryophyllene improved anxiety behavior in adult mice time spent in the center of the arena without altering general motor activity in the OF test, which can be evaluated as a reduction of anxiety symptoms. Prior administration of the CB2R antagonist AM630 completely abolished the anxiolytic effect.7580 β-Caryophyllene has a calming effect.81

2.6. Cannabinoids regulate compulsive behavior

The CB2R agonist β-caryophyllene (beta-caryophyllene) improved the number of buried marbles and time spent digging in adult mice , suggesting an antigang effect.75

2.7. Cannabinoids regulate addiction

β-Caryophyllene (beta-caryophyllene) inhibited cocaine-dependent behavior not via CB1R, CB2R or GPR55, but by activating PPARα and PPARγ.8283 β-Caryophyllene (beta-caryophyllene) also inhibited methamphetamine addiction84, heroin addiction85 nicotine addiction86 and alcohol addiction14 via CB2R1487 .
β-Caryophyllene (beta-caryophyllene) is an FDA-approved dietary supplement.88

2.8. Cannabinoids regulate appetite and food intake (also) via dopamine

See the article Cannabinoids also regulate appetite and food intake via dopamine

2.9. Cannabinoids modulate sleep

Endocannabinoids are involved in the regulation of sleep.89

2.10. Cannabinoids modulate stress

FAAH inhibitors (which inhibit the breakdown of AEA) and MAGL inhibitors (which inhibit the breakdown of 2-AG) influence the HPA axis and lead to reduced cortisol.73

2.11. Cannabinoids influence inflammation

2-AG has a strong influence on the immune system. MAGL inhibitors therefore have an anti-inflammatory effect.74

  • CT-3 (ajulemic acid, lenabasum), a synthetic THC analog and CB2R agonist, did not prove helpful in a phase III study against diffuse cutaneous systemic sclerosis.90

2.12. Cannabinoids influence pain

CB1R-KO mice91

  • have a reduced sensitivity to pain
  • show reduced pain relief due to cannabinoids
  • nevertheless develop neuropathic pain

CB1R are highly regulated91

  • for nerve injuries
  • in many rat models of neuropathic pain

CB1 agonists have a pain-relieving effect on neuropathic pain.9192

  • THC (3 to 6 mg/kg) and CP 55,940 (0.05 to 0.025 mg/kg) relieved neuropathic pain in animal models more effectively than morphine (8 to 16 mg/kg) and gabapentin (50 mg/kg), both intraperitoneally. The analgesic effect appears to occur via CB1R.91
  • CP 55,940, WIN 55,212-2 and HU-210 all produced complete reversal of mechanical hyperalgesia in the partial sciatic nerve ligation model of neuropathic pain.91

The selective CB2R agonist CT-3 (ajulemic acid, lenabasum, AJA, IP-751, JBT-101, anabasum)90 is a synthetic THC analog that has shown good efficacy in neuropathic pain in rodents and humans and has no psychotropic effects.93 At supratherapeutic doses, however, it increases the drug liking of THC taken in parallel94

A combination of FAAH inhibitor and MAGL partial inhibitor relieves neuropathic and inflammation-related pain.95

2.13. Cannabinoids influence nausea

Oral THC (Marinol®) has been approved by the FDA since 1985 to treat nausea associated with chemotherapy91
The synthetic THC analog nabilone (Cesamet®) was approved by the FDA in 1985 to treat nausea and vomiting associated with chemotherapy.91
The oral THC-CBD spray nabiximols (Sativex®) was first approved in the UK in 2010 for multiple sclerosis-related spasticity. It is also available in Spain, the Czech Republic, Germany, Denmark, Sweden, Italy, Austria, Poland, France and Canada (here also for neuropathic pain in multiple sclerosis or cancer). it was not yet approved in the USA in 2022, but approval is being pursued.

2.14. Cannabinoids influence memory

Glucocorticoids appear to recruit endocannabinoids from the amygdala to consolidate memory and store memory content.969798


  1. Bloomfield MA, Ashok AH, Volkow ND, Howes OD (2016): The effects of Δ9-tetrahydrocannabinol on the dopamine system. Nature. 2016 Nov 17;539(7629):369-377. doi: 10.1038/nature20153. PMID: 27853201; PMCID: PMC5123717. REVIEW

  2. Ohno-Shosaku T, Shosaku J, Tsubokawa H, Kano M (2002): Cooperative endocannabinoid production by neuronal depolarization and group I metabotropic glutamate receptor activation. Eur J Neurosci. 2002 Mar;15(6):953-61. doi: 10.1046/j.1460-9568.2002.01929.x. PMID: 11918654.

  3. El Khoury MA, Gorgievski V, Moutsimilli L, Giros B, Tzavara ET (2012): Interactions between the cannabinoid and dopaminergic systems: evidence from animal studies. Prog Neuropsychopharmacol Biol Psychiatry. 2012 Jul 2;38(1):36-50. doi: 10.1016/j.pnpbp.2011.12.005. PMID: 22300746. REVIEW

  4. Zhao S, Gu ZL, Yue YN, Zhang X, Dong Y (2024): Cannabinoids and monoaminergic system: implications for learning and memory. Front Neurosci. 2024 Aug 14;18:1425532. doi: 10.3389/fnins.2024.1425532. PMID: 39206116; PMCID: PMC11349573. REVIEW

  5. Gomes TM, Dias da Silva D, Carmo H, Carvalho F, Silva JP (2020): Epigenetics and the endocannabinoid system signaling: An intricate interplay modulating neurodevelopment. Pharmacol Res. 2020 Dec;162:105237. doi: 10.1016/j.phrs.2020.105237. PMID: 33053442. REVIEW

  6. Day JC, Fibiger HC (1994): Dopaminergic regulation of septohippocampal cholinergic neurons. J Neurochem. 1994 Dec;63(6):2086-92. doi: 10.1046/j.1471-4159.1994.63062086.x. PMID: 7964727.

  7. Nair SG, Gudelsky GA (2006): 3,4-Methylenedioxymethamphetamine enhances the release of acetylcholine in the prefrontal cortex and dorsal hippocampus of the rat. Psychopharmacology (Berl). 2006 Jan;184(2):182-9. doi: 10.1007/s00213-005-0271-5. PMID: 16378215.

  8. Nair SG, Gudelsky GA (2005): 3,4-Methylenedioxymethamphetamine (MDMA) enhances the release of acetylcholine by 5-HT4 and D1 receptor mechanisms in the rat prefrontal cortex. Synapse. 2005 Dec 15;58(4):229-35. doi: 10.1002/syn.20202. PMID: 16206181.

  9. Tzavara ET, Wade M, Nomikos GG (2003): Biphasic effects of cannabinoids on acetylcholine release in the hippocampus: site and mechanism of action. J Neurosci. 2003 Oct 15;23(28):9374-84. doi: 10.1523/JNEUROSCI.23-28-09374.2003. PMID: 14561865; PMCID: PMC6740571.

  10. Acquas E, Pisanu A, Marrocu P, Goldberg SR, Di Chiara G (2001): Delta9-tetrahydrocannabinol enhances cortical and hippocampal acetylcholine release in vivo: a microdialysis study. Eur J Pharmacol. 2001 May 11;419(2-3):155-61. doi: 10.1016/s0014-2999(01)00967-0. PMID: 11426837.

  11. Fitch TE, Sahr RN, Eastwood BJ, Zhou FC, Yang CR (2006): Dopamine D1/5 receptor modulation of firing rate and bidirectional theta burst firing in medial septal/vertical limb of diagonal band neurons in vivo. J Neurophysiol. 2006 May;95(5):2808-20. doi: 10.1152/jn.01210.2005. PMID: 16452256.

  12. Gessa GL, Casu MA, Carta G, Mascia MS (1998): Cannabinoids decrease acetylcholine release in the medial-prefrontal cortex and hippocampus, reversal by SR 141716A. Eur J Pharmacol. 1998 Aug 21;355(2-3):119-24. doi: 10.1016/s0014-2999(98)00486-5. PMID: 9760025.

  13. Mendiguren A, Aostri E, Pineda J (2018): Regulation of noradrenergic and serotonergic systems by cannabinoids: relevance to cannabinoid-induced effects. Life Sci. 2018 Jan 1;192:115-127. doi: 10.1016/j.lfs.2017.11.029. PMID: 29169951. REVIEW

  14. Brunt TM, Bossong MG (2022): The neuropharmacology of cannabinoid receptor ligands in central signaling pathways. Eur J Neurosci. 2022 Feb;55(4):909-921. doi: 10.1111/ejn.14982. PMID: 32974975; PMCID: PMC9291836. REVIEW

  15. Gobbi G, Bambico FR, Mangieri R, Bortolato M, Campolongo P, Solinas M, Cassano T, Morgese MG, Debonnel G, Duranti A, Tontini A, Tarzia G, Mor M, Trezza V, Goldberg SR, Cuomo V, Piomelli D (2005): Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18620-5. doi: 10.1073/pnas.0509591102. PMID: 16352709; PMCID: PMC1317988.

  16. Scavone JL, Mackie K, Van Bockstaele EJ (2010): Characterization of cannabinoid-1 receptors in the locus coeruleus: relationship with mu-opioid receptors. Brain Res. 2010 Feb 2;1312:18-31. doi: 10.1016/j.brainres.2009.11.023. PMID: 19931229; PMCID: PMC2835571.

  17. Mendiguren A, Pineda J (2006): Systemic effect of cannabinoids on the spontaneous firing rate of locus coeruleus neurons in rats. Eur J Pharmacol. 2006 Mar 18;534(1-3):83-8. doi: 10.1016/j.ejphar.2006.01.002. PMID: 16483566.

  18. Muntoni AL, Pillolla G, Melis M, Perra S, Gessa GL, Pistis M (2006): Cannabinoids modulate spontaneous neuronal activity and evoked inhibition of locus coeruleus noradrenergic neurons. Eur J Neurosci. 2006 May;23(9):2385-94. doi: 10.1111/j.1460-9568.2006.04759.x. PMID: 16706846.

  19. Kurihara J, Nishigaki M, Suzuki S, Okubo Y, Takata Y, Nakane S, Sugiura T, Waku K, Kato H (2001): 2-Arachidonoylglycerol and anandamide oppositely modulate norepinephrine release from the rat heart sympathetic nerves. Jpn J Pharmacol. 2001 Sep;87(1):93-6. doi: 10.1254/jjp.87.93. PMID: 11676206.

  20. Carvalho AF, Van Bockstaele EJ (2012): Cannabinoid modulation of noradrenergic circuits: implications for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2012 Jul 2;38(1):59-67. doi: 10.1016/j.pnpbp.2012.01.008. PMID: 22296986; PMCID: PMC3351574. REVIEW

  21. Kenney SP, Kekuda R, Prasad PD, Leibach FH, Devoe LD, Ganapathy V (1999): Cannabinoid receptors and their role in the regulation of the serotonin transporter in human placenta. Am J Obstet Gynecol. 1999 Aug;181(2):491-7. doi: 10.1016/s0002-9378(99)70583-1. PMID: 10454705.

  22. Lau T, Schloss P (2008): The cannabinoid CB1 receptor is expressed on serotonergic and dopaminergic neurons. Eur J Pharmacol. 2008 Jan 14;578(2-3):137-41. doi: 10.1016/j.ejphar.2007.09.022. PMID: 17931621.

  23. Haj-Dahmane S, Shen RY (2009): Endocannabinoids suppress excitatory synaptic transmission to dorsal raphe serotonin neurons through the activation of presynaptic CB1 receptors. J Pharmacol Exp Ther. 2009 Oct;331(1):186-96. doi: 10.1124/jpet.109.153858. PMID: 19592666; PMCID: PMC2766225.

  24. Segawa T, Takeuchi S, NAkano M (1976): Mechanism for the increase of brain 5-hydroxy-tryptamine and 5-hydroxyindoleacetic acid following delta9-tetrahydrocannabinol administration to rats. Jpn J Pharmacol. 1976 Jun;26(3):377-9. doi: 10.1254/jjp.26.377. PMID: 978851.

  25. Bambico FR, Katz N, Debonnel G, Gobbi G (2007): Cannabinoids elicit antidepressant-like behavior and activate serotonergic neurons through the medial prefrontal cortex. J Neurosci. 2007 Oct 24;27(43):11700-11. doi: 10.1523/JNEUROSCI.1636-07.2007. PMID: 17959812; PMCID: PMC6673235.

  26. Tao R, Ma Z (2012): Neural Circuit in the Dorsal Raphe Nucleus Responsible for Cannabinoid-Mediated Increases in 5-HT Efflux in the Nucleus Accumbens of the Rat Brain. ISRN Pharmacol. 2012;2012:276902. doi: 10.5402/2012/276902. PMID: 22830043; PMCID: PMC3399462.

  27. Tao R, Ma Z, Auerbach SB (1996): Differential regulation of 5-hydroxytryptamine release by GABAA and GABAB receptors in midbrain raphe nuclei and forebrain of rats. Br J Pharmacol. 1996 Dec;119(7):1375-84. doi: 10.1111/j.1476-5381.1996.tb16049.x. PMID: 8968546; PMCID: PMC1915829.

  28. Bambico FR, Cassano T, Dominguez-Lopez S, Katz N, Walker CD, Piomelli D, Gobbi G (2010): Genetic deletion of fatty acid amide hydrolase alters emotional behavior and serotonergic transmission in the dorsal raphe, prefrontal cortex, and hippocampus. Neuropsychopharmacology. 2010 Sep;35(10):2083-100. doi: 10.1038/npp.2010.80. PMID: 20571484; PMCID: PMC3055302.

  29. Egashira N, Mishima K, Katsurabayashi S, Yoshitake T, Matsumoto Y, Ishida J, Yamaguchi M, Iwasaki K, Fujiwara M (2002): Involvement of 5-hydroxytryptamine neuronal system in Delta(9)-tetrahydrocannabinol-induced impairment of spatial memory. Eur J Pharmacol. 2002 Jun 12;445(3):221-9. doi: 10.1016/s0014-2999(02)01755-7. PMID: 12079687.

  30. Sano K, Mishima K, Koushi E, Orito K, Egashira N, Irie K, Takasaki K, Katsurabayashi S, Iwasaki K, Uchida N, Egawa T, Kitamura Y, Nishimura R, Fujiwara M (2008): Delta 9-tetrahydrocannabinol-induced catalepsy-like immobilization is mediated by decreased 5-HT neurotransmission in the nucleus accumbens due to the action of glutamate-containing neurons. Neuroscience. 2008 Jan 24;151(2):320-8. doi: 10.1016/j.neuroscience.2007.10.026. PMID: 18083311.

  31. Ferreira SG, Teixeira FM, Garção P, Agostinho P, Ledent C, Cortes L, Mackie K, Köfalvi A (2012): Presynaptic CB(1) cannabinoid receptors control frontocortical serotonin and glutamate release–species differences. Neurochem Int. 2012 Jul;61(2):219-26. doi: 10.1016/j.neuint.2012.05.009. PMID: 22609378; PMCID: PMC3408788.

  32. Aso E, Renoir T, Mengod G, Ledent C, Hamon M, Maldonado R, Lanfumey L, Valverde O (2009): Lack of CB1 receptor activity impairs serotonergic negative feedback. J Neurochem. 2009 May;109(3):935-44. doi: 10.1111/j.1471-4159.2009.06025.x. PMID: 19302195.

  33. Centonze D, Battistini L, Maccarrone M (2008): The endocannabinoid system in peripheral lymphocytes as a mirror of neuroinflammatory diseases. Curr Pharm Des. 2008;14(23):2370-42. doi: 10.2174/138161208785740018. PMID: 18781987. REVIEW

  34. Centonze D, Rossi S, Prosperetti C, Tscherter A, Bernardi G, Maccarrone M, Calabresi P (2005): Abnormal sensitivity to cannabinoid receptor stimulation might contribute to altered gamma-aminobutyric acid transmission in the striatum of R6/2 Huntington’s disease mice. Biol Psychiatry. 2005 Jun 15;57(12):1583-9. doi: 10.1016/j.biopsych.2005.03.008. PMID: 15953496.

  35. Takahashi KA, Castillo PE (2006): The CB1 cannabinoid receptor mediates glutamatergic synaptic suppression in the hippocampus. Neuroscience. 2006;139(3):795-802. doi: 10.1016/j.neuroscience.2006.01.024. PMID: 16527424.

  36. Secci ME, Mascia P, Sagheddu C, Beggiato S, Melis M, Borelli AC, Tomasini MC, Panlilio LV, Schindler CW, Tanda G, Ferré S, Bradberry CW, Ferraro L, Pistis M, Goldberg SR, Schwarcz R, Justinova Z (2019): Astrocytic Mechanisms Involving Kynurenic Acid Control Δ9-Tetrahydrocannabinol-Induced Increases in Glutamate Release in Brain Reward-Processing Areas. Mol Neurobiol. 2019 May;56(5):3563-3575. doi: 10.1007/s12035-018-1319-y. PMID: 30151725; PMCID: PMC6393222.

  37. Ferraro L, Tomasini MC, Gessa GL, Bebe BW, Tanganelli S, Antonelli T (2001): The cannabinoid receptor agonist WIN 55,212-2 regulates glutamate transmission in rat cerebral cortex: an in vivo and in vitro study. Cereb Cortex. 2001 Aug;11(8):728-33. doi: 10.1093/cercor/11.8.728. PMID: 11459762.

  38. Hebert-Chatelain E, Reguero L, Puente N, Lutz B, Chaouloff F, Rossignol R, Piazza PV, Benard G, Grandes P, Marsicano G (2014): Cannabinoid control of brain bioenergetics: Exploring the subcellular localization of the CB1 receptor. Mol Metab. 2014 Apr 2;3(4):495-504. doi: 10.1016/j.molmet.2014.03.007. PMID: 24944910; PMCID: PMC4060213.

  39. Catanzaro G, Rapino C, Oddi S, Maccarrone M (2009): Anandamide increases swelling and reduces calcium sensitivity of mitochondria. Biochem Biophys Res Commun. 2009 Oct 16;388(2):439-42. doi: 10.1016/j.bbrc.2009.08.037. PMID: 19679102.

  40. Trezza V, Damsteegt R, Manduca A, Petrosino S, Van Kerkhof LW, Pasterkamp RJ, Zhou Y, Campolongo P, Cuomo V, Di Marzo V, Vanderschuren LJ (2012): Endocannabinoids in amygdala and nucleus accumbens mediate social play reward in adolescent rats. J Neurosci. 2012 Oct 24;32(43):14899-908. doi: 10.1523/JNEUROSCI.0114-12.2012. PMID: 23100412; PMCID: PMC3496852.

  41. Sagheddu C, Muntoni AL, Pistis M, Melis M (2015): Endocannabinoid Signaling in Motivation, Reward, and Addiction: Influences on Mesocorticolimbic Dopamine Function. Int Rev Neurobiol. 2015;125:257-302. doi: 10.1016/bs.irn.2015.10.004. PMID: 26638769. REVIEW

  42. Trezza V, Vanderschuren LJ (2008): Bidirectional cannabinoid modulation of social behavior in adolescent rats. Psychopharmacology (Berl). 2008 Apr;197(2):217-27. doi: 10.1007/s00213-007-1025-3. PMID: 18058088.

  43. Trezza V, Vanderschuren LJ (2008): Cannabinoid and opioid modulation of social play behavior in adolescent rats: differential behavioral mechanisms. Eur Neuropsychopharmacol. 2008 Jul;18(7):519-30. doi: 10.1016/j.euroneuro.2008.03.001. PMID: 18434104; PMCID: PMC2490798.

  44. Schneider M, Schömig E, Leweke FM (2008): Acute and chronic cannabinoid treatment differentially affects recognition memory and social behavior in pubertal and adult rats. Addict Biol. 2008 Sep;13(3-4):345-57. doi: 10.1111/j.1369-1600.2008.00117.x. PMID: 18782382.

  45. Keeley R, Himmler S, Pellis S, McDonald R (2021): Chronic exposure to ∆ 9-tetrahydrocannabinol in adolescence decreases social play behaviours. F1000Res. 2021 Nov 24;10:1191. doi: 10.12688/f1000research.53891.1. PMID: 34987774; PMCID: PMC8689401.

  46. Frischknecht HR, Sieber B, Waser PG (1982): Effects of multiple, chronic and early hashish exposure on mating behavior, nest-building and gestation in mice. Comp Biochem Physiol C Comp Pharmacol. 1982;72(2):363-8. doi: 10.1016/0306-4492(82)90106-x. PMID: 6128158.

  47. Mohammed AN, Alugubelly N, Kaplan BL, Carr RL (2018): Effect of repeated juvenile exposure to Δ9‑tetrahydrocannabinol on anxiety-related behavior and social interactions in adolescent rats. Neurotoxicol Teratol. 2018 Sep-Oct;69:11-20. doi: 10.1016/j.ntt.2018.06.003. PMID: 29936119.

  48. Weimar HV, Wright HR, Warrick CR, Brown AM, Lugo JM, Freels TG, McLaughlin RJ (2020): Long-term effects of maternal cannabis vapor exposure on emotional reactivity, social behavior, and behavioral flexibility in offspring. Neuropharmacology. 2020 Nov 15;179:108288. doi: 10.1016/j.neuropharm.2020.108288. PMID: 32860776.

  49. Faden VB, Graubard BI (2000): Maternal substance use during pregnancy and developmental outcome at age three. J Subst Abuse. 2000;12(4):329-40. doi: 10.1016/s0899-3289(01)00052-9. PMID: 11452837.

  50. Achterberg EJM, van Swieten MMH, Driel NV, Trezza V, Vanderschuren LJMJ (2016): Dissociating the role of endocannabinoids in the pleasurable and motivational properties of social play behaviour in rats. Pharmacol Res. 2016 Aug;110:151-158. doi: 10.1016/j.phrs.2016.04.031. PMID: 27154553; PMCID: PMC4914428.

  51. Schiavi S, Manduca A, Segatto M, Campolongo P, Pallottini V, Vanderschuren LJMJ, Trezza V (2019): Unidirectional opioid-cannabinoid cross-tolerance in the modulation of social play behavior in rats. Psychopharmacology (Berl). 2019 Sep;236(9):2557-2568. doi: 10.1007/s00213-019-05226-y. PMID: 30903212.

  52. Fontenot J, Loetz EC, Ishiki M, Bland ST (2018): Monoacylglycerol lipase inhibition alters social behavior in male and female rats after post-weaning social isolation. Behav Brain Res. 2018 Apr 2;341:146-153. doi: 10.1016/j.bbr.2017.12.038. PMID: 29292159; PMCID: PMC6034682.

  53. Trezza V, Vanderschuren LJ (2009): Divergent effects of anandamide transporter inhibitors with different target selectivity on social play behavior in adolescent rats. J Pharmacol Exp Ther. 2009 Jan;328(1):343-50. doi: 10.1124/jpet.108.141069. PMID: 18948500; PMCID: PMC2605777.

  54. Manduca A, Morena M, Campolongo P, Servadio M, Palmery M, Trabace L, Hill MN, Vanderschuren LJ, Cuomo V, Trezza V (2015): Distinct roles of the endocannabinoids anandamide and 2-arachidonoylglycerol in social behavior and emotionality at different developmental ages in rats. Eur Neuropsychopharmacol. 2015 Aug;25(8):1362-74. doi: 10.1016/j.euroneuro.2015.04.005. PMID: 25914159.

  55. Manduca A, Servadio M, Campolongo P, Palmery M, Trabace L, Vanderschuren LJ, Cuomo V, Trezza V (2014): Strain- and context-dependent effects of the anandamide hydrolysis inhibitor URB597 on social behavior in rats. Eur Neuropsychopharmacol. 2014 Aug;24(8):1337-48. doi: 10.1016/j.euroneuro.2014.05.009. PMID: 24933531.

  56. Marco EM, Rapino C, Caprioli A, Borsini F, Maccarrone M, Laviola G (2011): Social encounter with a novel partner in adolescent rats: activation of the central endocannabinoid system. Behav Brain Res. 2011 Jun 20;220(1):140-5. doi: 10.1016/j.bbr.2011.01.044. PMID: 21295077.

  57. Egerton A, Allison C, Brett RR, Pratt JA (2006): Cannabinoids and prefrontal cortical function: insights from preclinical studies. Neurosci Biobehav Rev. 2006;30(5):680-95. doi: 10.1016/j.neubiorev.2005.12.002. PMID: 16574226. REVIEW

  58. Lee TT, Filipski SB, Hill MN, McEwen BS (2014): Morphological and behavioral evidence for impaired prefrontal cortical function in female CB1 receptor deficient mice. Behav Brain Res. 2014 Sep 1;271:106-10. doi: 10.1016/j.bbr.2014.05.064. PMID: 24907533; PMCID: PMC4128323.

  59. Klugmann M, Goepfrich A, Friemel CM, Schneider M (2011): AAV-Mediated Overexpression of the CB1 Receptor in the mPFC of Adult Rats Alters Cognitive Flexibility, Social Behavior, and Emotional Reactivity. Front Behav Neurosci. 2011 Jul 13;5:37. doi: 10.3389/fnbeh.2011.00037. PMID: 21808613; PMCID: PMC3139222.

  60. Vanderschuren LJ, Achterberg EJ, Trezza V (2016): The neurobiology of social play and its rewarding value in rats. Neurosci Biobehav Rev. 2016 Nov;70:86-105. doi: 10.1016/j.neubiorev.2016.07.025. PMID: 27587003; PMCID: PMC5074863. REVIEW

  61. Manduca A, Servadio M, Damsteegt R, Campolongo P, Vanderschuren LJ, Trezza V (2016): Dopaminergic Neurotransmission in the Nucleus Accumbens Modulates Social Play Behavior in Rats. Neuropsychopharmacology. 2016 Aug;41(9):2215-23. doi: 10.1038/npp.2016.22. PMID: 26860202; PMCID: PMC4946055.

  62. Siviy SM, Panksepp J (2011): In search of the neurobiological substrates for social playfulness in mammalian brains. Neurosci Biobehav Rev. 2011 Oct;35(9):1821-30. doi: 10.1016/j.neubiorev.2011.03.006. PMID: 21414353. REVIEW

  63. Trezza V, Baarendse PJ, Vanderschuren LJ (2010): The pleasures of play: pharmacological insights into social reward mechanisms. Trends Pharmacol Sci. 2010 Oct;31(10):463-9. doi: 10.1016/j.tips.2010.06.008. PMID: 20684996; PMCID: PMC2946511. REVIEW

  64. Chakrabarti B, Kent L, Suckling J, Bullmore E, Baron-Cohen S (2006): Variations in the human cannabinoid receptor (CNR1) gene modulate striatal responses to happy faces. Eur J Neurosci. 2006 Apr;23(7):1944-8. doi: 10.1111/j.1460-9568.2006.04697.x. PMID: 16623851.

  65. Vanderschuren LJ, Trezza V, Griffioen-Roose S, Schiepers OJ, Van Leeuwen N, De Vries TJ, Schoffelmeer AN (2008): Methylphenidate disrupts social play behavior in adolescent rats. Neuropsychopharmacology. 2008 Nov;33(12):2946-56. doi: 10.1038/npp.2008.10. PMID: 18305462; PMCID: PMC2580804.

  66. Achterberg EJM, Damsteegt R, Vanderschuren LJMJ (2018): On the central noradrenergic mechanism underlying the social play-suppressant effect of methylphenidate in rats. Behav Brain Res. 2018 Jul 16;347:158-166. doi: 10.1016/j.bbr.2018.03.004. PMID: 29526788.

  67. Achterberg EJ, van Kerkhof LW, Damsteegt R, Trezza V, Vanderschuren LJ (2015): Methylphenidate and atomoxetine inhibit social play behavior through prefrontal and subcortical limbic mechanisms in rats. J Neurosci. 2015 Jan 7;35(1):161-9. doi: 10.1523/JNEUROSCI.2945-14.2015. PMID: 25568111; PMCID: PMC4287139.

  68. Fagundo AB, de la Torre R, Jiménez-Murcia S, Agüera Z, Pastor A, Casanueva FF, Granero R, Baños R, Botella C, Del Pino-Gutierrez A, Fernández-Real JM, Fernández-García JC, Frühbeck G, Gómez-Ambrosi J, Menchón JM, Moragrega I, Rodríguez R, Tárrega S, Tinahones FJ, Fernández-Aranda F (2013): Modulation of the Endocannabinoids N-Arachidonoylethanolamine (AEA) and 2-Arachidonoylglycerol (2-AG) on Executive Functions in Humans. PLoS One. 2013 Jun 19;8(6):e66387. doi: 10.1371/journal.pone.0066387. PMID: 23840456; PMCID: PMC3686875.

  69. Bright U, Akirav I (2025): Cannabidiol Modulates Neuroinflammatory and Estrogen-Related Pathways in a Sex-Specific Manner in a Chronic Stress Model of Depression. Cells. 2025 Jan 10;14(2):99. doi: 10.3390/cells14020099. PMID: 39851527; PMCID: PMC11763596.

  70. Poleszak E, Wośko S, Sławińska K, Szopa A, Wróbel A, Serefko A (2018): Cannabinoids in depressive disorders. Life Sci. 2018 Nov 15;213:18-24. doi: 10.1016/j.lfs.2018.09.058. PMID: 30290188. REVIEW

  71. Smaga I, Bystrowska B, Gawliński D, Przegaliński E, Filip M (2014): The endocannabinoid/endovanilloid system and depression. Curr Neuropharmacol. 2014 Sep;12(5):462-74. doi: 10.2174/1570159X12666140923205412. PMID: 25426013; PMCID: PMC4243035.

  72. Hill MN, Miller GE, Ho WS, Gorzalka BB, Hillard CJ (2008): Serum endocannabinoid content is altered in females with depressive disorders: a preliminary report. Pharmacopsychiatry. 2008 Mar;41(2):48-53. doi: 10.1055/s-2007-993211. PMID: 18311684; PMCID: PMC3422568.

  73. Ren SY, Wang ZZ, Zhang Y, Chen NH (2020): Potential application of endocannabinoid system agents in neuropsychiatric and neurodegenerative diseases-focusing on FAAH/MAGL inhibitors. Acta Pharmacol Sin. 2020 Oct;41(10):1263-1271. doi: 10.1038/s41401-020-0385-7. PMID: 32203086; PMCID: PMC7608191. REVIEW

  74. Ogawa S, Kunugi H (2015): Inhibitors of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase: New Targets for Future Antidepressants. Curr Neuropharmacol. 2015;13(6):760-75. doi: 10.2174/1570159x13666150612225212. PMID: 26630956; PMCID: PMC4759315. REVIEW

  75. Bahi A, Al Mansouri S, Al Memari E, Al Ameri M, Nurulain SM, Ojha S (2014): β-Caryophyllene, a CB2 receptor agonist produces multiple behavioral changes relevant to anxiety and depression in mice. Physiol Behav. 2014 Aug;135:119-24. doi: 10.1016/j.physbeh.2014.06.003. PMID: 24930711.

  76. Jiang W, Zhang Y, Xiao L, Van Cleemput J, Ji SP, Bai G, Zhang X (2005): Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects. J Clin Invest. 2005 Nov;115(11):3104-16. doi: 10.1172/JCI25509. PMID: 16224541; PMCID: PMC1253627.

  77. Morrish AC, Hill MN, Riebe CJ, Gorzalka BB (2009): Protracted cannabinoid administration elicits antidepressant behavioral responses in rats: role of gender and noradrenergic transmission. Physiol Behav. 2009 Aug 4;98(1-2):118-24. doi: 10.1016/j.physbeh.2009.04.023. PMID: 19414024.

  78. McLaughlin RJ, Hill MN, Morrish AC, Gorzalka BB (2007): Local enhancement of cannabinoid CB1 receptor signalling in the dorsal hippocampus elicits an antidepressant-like effect. Behav Pharmacol. 2007 Sep;18(5-6):431-8. doi: 10.1097/FBP.0b013e3282ee7b44. PMID: 17762511.

  79. Lutz B, Marsicano G, Maldonado R, Hillard CJ (2015): The endocannabinoid system in guarding against fear, anxiety and stress. Nat Rev Neurosci. 2015 Dec;16(12):705-18. doi: 10.1038/nrn4036. PMID: 26585799; PMCID: PMC5871913. REVIEW

  80. Galdino PM, Nascimento MV, Florentino IF, Lino RC, Fajemiroye JO, Chaibub BA, de Paula JR, de Lima TC, Costa EA (2012): The anxiolytic-like effect of an essential oil derived from Spiranthera odoratissima A. St. Hil. leaves and its major component, β-caryophyllene, in male mice. Prog Neuropsychopharmacol Biol Psychiatry. 2012 Aug 7;38(2):276-84. doi: 10.1016/j.pnpbp.2012.04.012. PMID: 22542869.

  81. Dougnon G, Ito M (2021): Essential Oil from the Leaves of Chromolaena odorata, and Sesquiterpene Caryophyllene Oxide Induce Sedative Activity in Mice. Pharmaceuticals (Basel). 2021 Jul 6;14(7):651. doi: 10.3390/ph14070651. PMID: 34358077; PMCID: PMC8308581.

  82. Galaj E, Bi GH, Moore A, Chen K, He Y, Gardner E, Xi ZX (2021): Beta-caryophyllene inhibits cocaine addiction-related behavior by activation of PPARα and PPARγ: repurposing a FDA-approved food additive for cocaine use disorder. Neuropsychopharmacology. 2021 Mar;46(4):860-870. doi: 10.1038/s41386-020-00885-4. PMID: 33069159; PMCID: PMC8026612.

  83. Asth L, Cruz LC, Soyombo N, Rigo P, Moreira FA (2023): Effects of β -caryophyllene, A Dietary Cannabinoid, in Animal Models of Drug Addiction. Curr Neuropharmacol. 2023;21(2):213-218. doi: 10.2174/1570159X20666220927115811. PMID: 36173065; PMCID: PMC10190141.

  84. He XH, Galaj E, Bi GH, He Y, Hempel B, Wang YL, Gardner EL, Xi ZX (2021): β-caryophyllene, an FDA-Approved Food Additive, Inhibits Methamphetamine-Taking and Methamphetamine-Seeking Behaviors Possibly via CB2 and Non-CB2 Receptor Mechanisms. Front Pharmacol. 2021 Sep 9;12:722476. doi: 10.3389/fphar.2021.722476. PMID: 34566647; PMCID: PMC8458938.

  85. Galaj E, Bi GH, Xi ZX (2024): β-caryophyllene inhibits heroin self-administration, but does not alter opioid-induced antinociception in rodents. Neuropharmacology. 2024 Jul 1;252:109947. doi: 10.1016/j.neuropharm.2024.109947. PMID: 38631564; PMCID: PMC11077898.

  86. He Y, Galaj E, Bi GH, Wang XF, Gardner E, Xi ZX (2020): β-Caryophyllene, a dietary terpenoid, inhibits nicotine taking and nicotine seeking in rodents. Br J Pharmacol. 2020 May;177(9):2058-2072. doi: 10.1111/bph.14969. PMID: 31883107; PMCID: PMC7161544.

  87. Hashiesh HM, Sharma C, Goyal SN, Sadek B, Jha NK, Kaabi JA, Ojha S (2021): A focused review on CB2 receptor-selective pharmacological properties and therapeutic potential of β-caryophyllene, a dietary cannabinoid. Biomed Pharmacother. 2021 Aug;140:111639. doi: 10.1016/j.biopha.2021.111639. PMID: 34091179. REVIEW

  88. Dos Santos Barbosa LA, Dutra RC, Moreira ELG, de Carvalho CR (2023): β-caryophyllene, a cannabinoid receptor 2 agonist, decreases the motivational salience and conditioning place preference for palatable food in female mice. Addict Biol. 2023 Jan;28(1):e13249. doi: 10.1111/adb.13249. PMID: 36577722.

  89. Murillo-Rodríguez E, Budde H, Veras AB, Rocha NB, Telles-Correia D, Monteiro D, Cid L, Yamamoto T, Machado S, Torterolo P (2020): The Endocannabinoid System May Modulate Sleep Disorders in Aging. Curr Neuropharmacol. 2020;18(2):97-108. doi: 10.2174/1570159X17666190801155922. PMID: 31368874; PMCID: PMC7324886. REVIEW

  90. Spiera R, Kuwana M, Khanna D, Hummers L, Frech TM, Stevens W, Matucci-Cerinic M, Kafaja S, Distler O, Jun JB, Levy Y, Leszcyzński P, Gordon J, Steen V, Lee EB, Jankowski T, Litinsky I, Chung L, Hsu V, Mayes M, Sandorfi N, Simms RW, Finzel S, de Vries-Bouwstra J, Constantine S, Dgetluck N, Dinh Q, Bloom BJ, Furst DE, White B, Denton CP; RESOLVE-1 Study Group (2023): Efficacy and Safety of Lenabasum, a Cannabinoid Type 2 Receptor Agonist, in a Phase 3 Randomized Trial in Diffuse Cutaneous Systemic Sclerosis. Arthritis Rheumatol. 2023 Sep;75(9):1608-1618. doi: 10.1002/art.42510. PMID: 37098795.

  91. Banister SD, Krishna Kumar K, Kumar V, Kobilka BK, Malhotra SV (2019): Selective modulation of the cannabinoid type 1 (CB1) receptor as an emerging platform for the treatment of neuropathic pain. Medchemcomm. 2019 Mar 18;10(5):647-659. doi: 10.1039/c8md00595h. PMID: 31191856; PMCID: PMC6533890. REVIEW

  92. De Vry J, Denzer D, Reissmueller E, Eijckenboom M, Heil M, Meier H, Mauler F (2004): 3-[2-cyano-3-(trifluoromethyl)phenoxy]phenyl-4,4,4-trifluoro-1-butanesulfonate (BAY 59-3074): a novel cannabinoid Cb1/Cb2 receptor partial agonist with antihyperalgesic and antiallodynic effects. J Pharmacol Exp Ther. 2004 Aug;310(2):620-32. doi: 10.1124/jpet.103.062836. PMID: 15140913.

  93. Burstein SH, Karst M, Schneider U, Zurier RB (2004): Ajulemic acid: A novel cannabinoid produces analgesia without a “high”. Life Sci. 2004 Aug 6;75(12):1513-22. doi: 10.1016/j.lfs.2004.04.010. PMID: 15240185. REVIEW

  94. Luba R, Madera G, Schusterman R, Kolodziej A, Hodgson I, Comer SD (2024): Evaluating the Abuse Potential of Lenabasum, a Selective Cannabinoid Receptor 2 Agonist. J Pharmacol Exp Ther. 2024 Oct 18;391(2):272-278. doi: 10.1124/jpet.124.002129. PMID: 38936978; PMCID: PMC11493446.

  95. Ghosh S, Kinsey SG, Liu QS, Hruba L, McMahon LR, Grim TW, Merritt CR, Wise LE, Abdullah RA, Selley DE, Sim-Selley LJ, Cravatt BF, Lichtman AH (2015): Full Fatty Acid Amide Hydrolase Inhibition Combined with Partial Monoacylglycerol Lipase Inhibition: Augmented and Sustained Antinociceptive Effects with Reduced Cannabimimetic Side Effects in Mice. J Pharmacol Exp Ther. 2015 Aug;354(2):111-20. doi: 10.1124/jpet.115.222851. PMID: 25998048; PMCID: PMC4518073.

  96. Atsak P, Roozendaal B, Campolongo P (2012): Role of the endocannabinoid system in regulating glucocorticoid effects on memory for emotional experiences. Neuroscience. 2012 Mar 1;204:104-16. doi: 10.1016/j.neuroscience.2011.08.047. PMID: 21893167. REVIEW

  97. Campolongo P, Roozendaal B, Trezza V, Hauer D, Schelling G, McGaugh JL, Cuomo V (2009): Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory. Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4888-93. doi: 10.1073/pnas.0900835106. PMID: 19255436; PMCID: PMC2660732.

  98. Nedaei SE, Rezayof A, Pourmotabbed A, Nasehi M, Zarrindast MR (2016): Activation of endocannabinoid system in the rat basolateral amygdala improved scopolamine-induced memory consolidation impairment. Behav Brain Res. 2016 Sep 15;311:183-191. doi: 10.1016/j.bbr.2016.05.043. PMID: 27230394.

Diese Seite wurde am 24.05.2025 zuletzt aktualisiert.