Cannabinoids
Cannabinoids are produced by the body itself (endocannabinoids), by plants (phytocannabinoids) and can be produced artificially (synthetic cannabinoids).
Cannabinoids act as neurotransmitters and are closely linked to the dopamine system.
- 1. Cannabinoids
- 1.1. Endocannabinoids
- 1.2. Phytocannabinoids (plant cannabinoids)
- 1.2.1. Cannabinoids from the hemp plant
- 1.2.1.1. Tetrahydrocannabinoids
- 1.2.1.2. CBD-type cannabinoids (cannabidiols)
- 1.2.1.3. CBC-type cannabinoids (cannabichromenes)
- 1.2.1.4. CBCN-type cannabinoids (cannabichromanones)
- 1.2.1.5. CBL-type cannabinoids (cannabicyclols)
- 1.2.1.6. CBE-type cannabinoids (cannabielsoins)
- 1.2.1.7. CBN-type cannabinoids (cannabinols)
- 1.2.1.8. CBT-type cannabinoids (cannabitriols)
- 1.2.1.9. CBND-type cannabinoids (cannabinodiols)
- 1.2.1.10. CBG-type cannabinoids (cannabigerols)
- 1.2.1.11. Unclear to which type
- 1.2.2. Cannabinoids from other plants
- 1.2.1. Cannabinoids from the hemp plant
- 1.3. Synthetic cannabinoids (cannabinoid mimetics)
- 1.4. Endocannabinoidome: the extended cannabinoid system
1. Cannabinoids
1.1. Endocannabinoids
Endocannabinoids are cannabinoids produced by the body itself. Endocannabinoids are bioactive lipids and consist of two structurally different classes of fatty acid derivatives, the acylethanolamides (AEs) and the monoacylglycerols (MAGs).
Endocannabinoids are synthesized on demand by dopaminergic neurons of the VTA and released postsynaptically. From there, they bind to presynaptic12 cannabinoid receptors on nearby GABAergic (inhibitory) and glutamatergic (activating) neurons3
1.1.1. Known endocannabinoids
Endocannabinoids are:
- Omega-6 endocannabinoids (ω-6 endocannabinoids)4
- Anandamide, AEA (see below for details)
- 2-AG (see below for details)
- PEA (see below)
- Omega-3 endocannabinoids (ω-3 endocannabinoids)
- NADA (N-arachidonoyldopamine)7
- γ-Linolenoylethanolamide10
- DEA (docosatetraenoylethanolamide)10
- Noladinether (2-arachidonylglyceryl ether)11
- Virodhamin (O-arachidonylethanolamide)11
- partial CB1R antagonist12
- OEA (oleoylethanolamide)13
- PPAR-α agonist (PPAR-α: peroxisome proliferator-activated receptor alpha)14
- GPR-119 agonist15
- does not bind to CB1R16
- conveys a feeling of satiety17
- has an antidepressant effect14
- via PPAR-α and histamine
- Reduction via FAAH and FAAH-2 (equally strong)18
- FAAH2 only in primates, not in rodents18
- is freely available as a dietary supplement
- NAGly (N-arachidonylglycine)11
- Oleic acid amide, oleamide ((Z)-octadec-9-enamide)11
- Carboxylic acid amide of oleic acid
- CB1R agonist
- TRPV1 agonist
- sleep inducing
- Dismantling by FAAH
- Stearylethanolamide10
It is assumed that AEA represents more of a “tonic” mechanism and 2-AG more of a “burst-like” mechanism for CB1R activation19
DHA (docosahexaenoic acid) reduces the gene expression of endocannabinoids.20
Endocannabinoids can influence the gene expression of dopamine receptors.
- THC during birth caused2122
- in the neonatal period
- delayed appearance of neonatal reflexes
- increased DRD2 mRNA
- 2-AG brain levels decreased, which persisted into adulthood
- in adult rats
- increased CNR1 expression (the gene that codes for CB1R) (only) in the PFC
- increased DRD2 expression (only) in the PFC
- increased DRD3 expression (only) in the PFC
- consistent reduction of DNA methylation in the DRD2 regulatory region
- social withdrawal
- cognitive impairments
- which was reversed by cannabidiol treatment
- in the neonatal period
1.1.2. AEA (anandamide, N-arachidonoylethanolamine)
- occurs in large quantities in the CNS
- Ethanolamine derivative of arachidonic acid
- is an acylethanolamide
1.1.2.1. Synthesis of AEA
There are several alternative synthesis pathways of AEA, which may be preferred depending on the brain region or for different physiological and pathophysiological processes.23
- First step: Synthesis of NAPE
- Phosphatidylethanolamine is converted to NAPE (N-acyl-phosphatidylethanolamine (N-arachidonoylphosphatidylethanolamine)) by N-acylation with N-acyltransferase1324
OR- Arachidonic acid (a polyunsaturated omega-6 fatty acid, PUFA) is converted from the sn-1 position of phosphatidylcholine to N-arachidonoylphosphatidylethanolamine (NAPE) by transacylase
- Phosphatidylethanolamine is converted to NAPE (N-acyl-phosphatidylethanolamine (N-arachidonoylphosphatidylethanolamine)) by N-acylation with N-acyltransferase1324
- Second step: NAPE becomes anandamide
- NAPE is hydrolyzed to anandamide by phospholipase D (NAPE-PLD)13242526
OR - NAPE is produced by sequential deacylation by phospholipase B (alpha,beta-hydrolase 4, ABHD4) and subsequent cleavage of glycerophosphate to AEA (in around 60 minutes)25
OR - NAPE is hydrolyzed by phospholipase C to phosphoanandamide25
OR - NAPE is dephosphorylated by phosphatases (e.g. the tyrosine phosphatase PTPN22 and the inositol 5’-phosphatase SHIP1) (in less than 10 minutes)25
- NAPE is hydrolyzed to anandamide by phospholipase D (NAPE-PLD)13242526
1.1.2.2. AEA and blood-brain barrier
Anandamide can cross the blood-brain barrier. Thus, blood AEA could be a reservoir for the brain and blood AEA deficiency or excess could maintain a similar imbalance of AEA levels in the brain as has been demonstrated in Huntington’s disease, Parkinson’s disease, multiple sclerosis, ADHD, schizophrenia, depression and headache.2728 Consequences could be that dysfunctions of endocannabinoid signaling in the brain are mirrored by elements of the peripheral endocannabinoid system. It may be possible to diagnose and treat neurological disorders using blood endocannabinoids (e.g. anandamide).27
A study on healthy adults found higher AEA levels in women than in men. 2-AG was not independent of gender. AEA and 2-AG concentrations were independent of age, education, BMI, caffeine and alcohol consumption29
1.1.2.3. AEA receptor binding
AEA binds to a striking number of different receptors:30
- CB1R (partial agonist)27
- AEA probably binds to CB1R at low AEA concentrations, to TRPV1 only at high concentrations31
- It is possible that AEA only acts as a partial CB1R agonist without 2-AG and as a competitive antagonist in the presence of 2-AG 32
- With low receptor density or a limited number of post-receptor effectors, AEA (like THC) can antagonize the CB1R signals triggered by 2-AG.23333435
- CB2R (partial agonist)27 significantly weaker than at CB1R10
- TRPV1 receptor (full agonist, weak binding)27 (partial agonist)36
- AEA probably only binds to TRPV1 at high concentrations, but to CB1R even at low AEA concentrations31
- vasodilatory, among other things
- SCP-2 (sterol carriere protein 2, a lipid transport protein) with moderate affinity (Ki = 0.68)3738
- Glycine receptors in the VTA39
- nicotinic acetylcholine receptors (nAChR)39
- Adenosine receptor A340
- muscarinic acetylcholine receptor M140
- muscarinic acetylcholine receptor M440
- 5-HT1A40
- 5-HT2A40
- 5HT3A (antagonist)41
The differences in the binding affinity of AEA to CB1R and TRPV1 could mean that31
- low AEA levels preferentially bind CB1 receptors, while
- higher concentrations affect TRPV1 channels
1.1.2.4. Reduction of AEA
- enzymatic hydrolysis to ethanolamine and arachidonic acid by
- P450 enzymes, including4546
- CYP2D6
- CYP3A4
- CYP4F2
- CYP4X1
- Oxidation through47
- COX-2 (cyclooxygenase-2) to prostaglandins48
- 12-Lipoxygenases
- 15-Lipoxygenases
AEA has a very short half-life as it is rapidly taken up with high affinity by the AEA membrane transporter in neurons and glia.51 Although AEA binds to the CB1R like THC, it has little psychoactive effect, presumably because it is rapidly broken down.52
1.1.2.5. Effects of AEA
- Inhibits neuropathic pain when injected into the hippocampus53
- Possibly through desensitization of TRPV1
- Increases adenosine54
- Adenosine increases ADHD symptoms. More on this at Adenosine In the section Neurotransmitters in ADHD in the chapter Neurological aspects.
- Regulates social reward55
- Elevated AEA levels correlate with a lower preference for affective touch in relation to social processing. The AEA level was independent of the evaluation of affective pictures.
- Low AEA administration increased sexual behavior in male rats56
- Inhibits depressive symptoms57 via CB2R58
- Depressed women showed reduced peripheral AEA and 2-AG levels59
- Depressed suicide victims showed increased CB1R expression dlPFC60
- People with ADHD and depression are more likely to have CB1R polymorphisms57
- The CB1R antagonist rimonabant increases symptoms of depression and anxiety61
- The effect of conventional antidepressants (including fluoxetine) is dependent on endocannabinoid signaling62, including PPARα63
- Increased AEA (by an AEA uptake inhibitor and AEA degradation inhibitor) normalized the impairment of contextual fear conditioning of the SHR64
- reduces endocrine stress reactions of the HPA axis65
- AEA (as well as the endocannabinoid-like oleoylethanolamide, OEA) reduced the permeability of the blood-brain barrier, i.e. increased its resistance, via CB2R (in astrocytes), TRPV1 receptor, calcitonin gene-regulated peptide receptor (CGRP) (anandamide only) and PPARα receptor (OEA only)8
- Enhances NMDA-induced excitation of locus coeruleus neurons via CB1R66
- Partial agonist of TRPV1 (as well as methanandamide and AM404)67
- AEA reduces 2-AG via TRPV1.68
- AEA administration such as inhibition of AEA degradation reduced 2-AG levels, 2-AG metabolism and 2-AG effects in the striatum
- The stable AEA analog methanandamide had a comparable effect
- Inhibition of TRPV1 prevented the effect on 2-AG
1.1.2.6. AEA (anandamide) for ADHD and other disorders
- AEA is elevated in ADHD69
- AEA reduced blood pressure in SHR7071 72 and anesthetized guinea pigs73, but not in rats without hypertension74
- Reduced AEA degradation (by a FAAH inhibitor) normalized blood pressure in SHR7576
- AEA reduces hyperactive behavior77 in SHR7879
- AEA caused bradycardia (rapid heartbeat) only in SHR74
In relapsing-remitting MS, AEA (but not 2-AG) was elevated in the cerebrospinal fluid. At the same time, AEA was increased in peripheral lymphocytes, resulting in increased synthesis and decreased degradation. Increased AEA synthesis, decreased AEA degradation and increased AEA concentrations were also found in the brains of MS model mice during acute MS relapses.80 Endocannabinoids have a tonic effect on spasticity in MS.81
1.1.3. 2-AG (2-arachidonylglycerol)
2-AG is an ester of arachidonic acid (a polyunsaturated omega-6 fatty acid, PUFA) and glycerol.
2-AG is found in the brain in 170 times the amount of AEA.82 unlike AEA, 2-AG is not present in the striatum82
1.1.3.1. Synthesis of 2-AG:
De novo synthesis.
Most of the 2-AG seems to be generated by23
- Arachidonoyl-containing PIP2 (often 1-stearoyl-2-arachidonoyl-sn-glycerol is hydrolyzed to diacylglycerol by a PLCβ
- An increase in intracellular calcium leads to the activation of sn-1-specific diacylglycerol lipase-α and -β.
- Diacylglycerol is hydrolyzed to 2-AG by diacylglycerol lipase (DAGL)8384
- DAGLα appears to be responsible for the majority of 2-AG production and to contribute to synaptic plasticity in the adult CNS.858687 DAGLβ appears to contribute to synaptic 2-AG under certain conditions and plays an important role in the formation of 2-AG during immune responses.23
- DGLα is expressed in
- The diacylglycerol lipase inhibitor DO34 reduces the biosynthesis of 2-AG89 and the response to / effect of alcohol in mice.
This synthesis pathway is stimulated by receptors that activate PLC, e.g.
- group I metabotropic glutamate receptors
- M1 muscarinic receptors
- M3 muscarinic receptors
- Orexin A
A secondary route for 2-AG synthesis could be:23
- Cleavage of the phosphatidyl inositol precursor by a phospholipase A
- Hydrolysis of the phosphate ester bond by a lyso-phospholipase C
A study in healthy adults found no gender-dependent differences in 2-AG levels, while AEA was elevated in women. AEA and 2-AG concentrations were independent of age, education, BMI, caffeine and alcohol consumption29
1.1.3.2. 2-AG receptor binding
2-AG binds to a striking number of different receptors:30
- CB1R and CB2R full agonist90
- GPR 55 and GPR 11910
- TRPv1 (vanilloid receptor type 1) as an agonist10
- this was still seen differently in 201230
- SCP-2 (sterol carrier protein 2, a lipid transport protein) with moderate affinity (Ki = 0.37)37
- GABA-A receptors91
1.1.3.3. Effect of 2-AG
The 2-AG level is determined by the balance between postsynaptic production by DAGLα and presynaptic degradation by MAGL.36
- Fear
- Reward88
- Stimuli are classified as rewarding and motivating by phasic dopaminergic activity9495
- Rewards promote the phasic activity of dopaminergic neurons, which correlates with the release of dopamine in the nucleus accumbens
- aversive stimuli inhibit the phasic activity of dopaminergic neurons
- WIN 55,212-2 (cannabinoid antagonist) acts via CB1R
- increased reward behavior correlates with increased 2-AG levels (but not AEA) in the VTA [87]
- cB1R blockade in the VTA, PFC and nucleus accumbens reduces reward behavior [87], [88].
- Stimuli are classified as rewarding and motivating by phasic dopaminergic activity9495
- 2-AG (as well as noladinether and oleamide) showed no influence on the permeability of the blood-brain barrier8
1.1.3.4. Reduction of 2-AG
2-AG is 85 % degraded by MAGL and 15 % by ABHD6 and ABHD12.98
- quick dismantling due to99
- Uptake into the cells
- enzymatic hydrolysis to ethanolamine and arachidonic acid by
- MAGL (monoacylglycerol lipase / monoacylglycerol lipase)42
- MAGL is localized at the presynaptic membrane100
- ABDH6 (α,β-hydrolase domain-containing 6)4
- ABDH12 (α,β-hydrolase domain-containing 6)4
- FAAH (fatty acid amide hydrolase, N-arachidonoylethanolamine amidohydrolase)27 (subordinate)
- NAAA (N-acylethanolamine amidase)42 (subordinate)
- MAGL (monoacylglycerol lipase / monoacylglycerol lipase)42
- Oxidation through47
- Cyclooxygenase-250
- 12-Lipoxygenases
- 15-Lipoxygenases
Which influences 2-AG, among other things:
- Sustained elevation of neuregulin-1 (a common hallmark of schizophrenia) impairs endocannabinoid-mediated synaptic regulation101
- Neuregulin-1 increased AG-2 degradation in the hippocampus in vitro by increasing the expression of the 2-AG degradation enzyme MAGL
- shortened depolarization-induced 2-AG signaling reduced the 2-AG-dependent long-term depression of inhibitory synapses
- 2-AG is increased by masturbation and orgasm.102
1.1.4. PEA (palmitoylethanolamide)
PEA (palmitoylethanolamide), formerly also known as LG 2110/1103, is one of the most common N-acylethanolamines together with AEA and OAE.104
1.1.4.1. Synthesis of PEA
The structure, synthesis and degradation of PEA is similar to AEA.88
1.1.4.2. PEA receptor binding
PEA binds to:
- PPARα agonist (PPARα: peroxisome proliferator-activated receptor alpha)1388 , the main pathway of action of PEA
- EC50 = 3.1 μM105
- GPR55 selective agonist106 non-selective107
- EC50 = 4 nM108
- CB1R
- CB2R
Uptake in cells / reuptake in cells
PEA crosses the blood-brain barrier.110
The main receptor of PEA, PPAR-Alpha, is found inside cells. PEA must therefore first be taken up by the cell.104
To date, no cell membrane transporter has been discovered for PEA, as exists for the closely related AEA.104 In particular, PEA is not reabsorbed by the AEA transporter, but enters the cell interior by other mechanisms.111
Around half of the uptake of PEA in cells occurs through a temperature-dependent process. Endogenous and plant cannabinoids such as AEA, 2-AG, arachidonic acid, R1-methanandamide, Δ9-THC and CBD inhibited uptake112
The other half appears to occur by diffusion through the cell membrane. The uptake of PEA into the cell is not affected by FAAH (unlike AEA).113
1.1.4.3. Reduction of PEA
Reduction of PEA:
Hydrolysis to palmitic acid and ethanolamine104
- primarily through N-acylethanolamine-hydrolyzing acid amidase (NAAA)114
- also by FAAH115 and FAAH2104
1.1.4.4. Effect of PEA
- anti-inflammatory116117
- via PPAR-δ (Delta) and PPAR-γ (Gamma)118
- inhibits mast cell activation119
- antimicrobial117
- immunomodulatory117
- neuroprotective117
- via PPAR-δ (Delta) and PPAR-γ (Gamma)118
- pain-relieving
- antidepressant120121107123
- especially for men133
- a single dose of PEA induced prolonged stress-induced depression and PTSD in the socially isolated mouse, an animal model for prolonged stress-induced depression and PTSD:134135136137
- Allopregnanolone increased in PFC, amygdala, hippocampus and olfactory bulb
- aggressive behavior weakened
- Depression symptoms reduced
- Reduced anxiety symptoms
- increased BDNF138120
- anxiety-relieving123
- regulates HPA axis110
- Blood pressure lowering in SHR139 SHR are the main model animal for elevated blood pressure and ADHD.
- unchanged AEA blood levels in humans and rodents - at least when taken orally140, AEA also remains unchanged in the gut (as does OEA)141, whereby PEA is primarily degraded in the gut by NAAA and in the brain and liver by FAAH, which also degrades AEA104. We therefore see an option that PEA could increase AEA in the brain because it competes directly with AEA for FAAH as a degradation enzyme. AEA only increased with intraperitoneal administration in rodents.142
- 2-AG increased140
- very good tolerance117143 , non-toxic even at high doses144
- short bioavailability117
- sustained release products have been developed that may allow for lower dosing117
- Absorption is improved by (ultra) micronization (very fine components)
- Half-life
- 300 mg of ultramicronized PEA orally led to a doubling of plasma lipid levels in humans after two hours, which returned to normal levels after 4 and 6 hours140
- we suspect that multiple doses throughout the day are necessary to compensate for the short bioavailability
- in rats, around 1% of the orally ingested amount reached the brain, primarily in the hypothalamus and pituitary gland, as well as peripherally in the adrenal glands110
- very poorly soluble in water
- is marketed as a “dietary food for special medical purposes”
- recommended dose is generally 1200 mg/day146
PEA appears to be reduced in Huntington’s disease147 and multiple sclerosis81.44
1.2. Phytocannabinoids (plant cannabinoids)
Phytocannabinoids are phenolic terpenoids.148
1.2.1. Cannabinoids from the hemp plant
The best-known (phyto)cannabinoids are those from the hemp plant. The botanical classification of hemp is149
- Department: Tracheophyta
- Subdivision: Pteropsida
- Class: Angiospermae
- Order: Urticales
- Subclass: Dicotyledoneae
- Family: Cannabaceae
- Genus: Cannabis
- Species: sativa and indica. Possibly also ruderalis
in 2024, 113 cannabinoids from cannabis plants were known.150
1.2.1.1. Tetrahydrocannabinoids
Tetrahydrocannabinoids
- THC (tetrahydrocannabinol, (-)-Δ9-trans-tetrahydrocannabinol, delta 9-tetrahydrocannabinol, delta 9-THC)
- THCV (Δ9-tetrahydrocannabivarin)153
- Propyl homolog of THC
- CB1R and CB2R neutral antagonist
- CB2R partial agonist at higher concentration
- TRPV1 agonist and desensitizer
- Δ9-THCVAA ((-)-Δ9-trans-tetrahydrocannabivarinic acid)
- Δ8-THC (Δ8-tetrahydrocannabinol)154
- Δ8-THCA (Δ8- trans-tetrahydrocannabinolic acid A)154
- 10α-Hydroxy-Δ8-tetrahydrocannabinol154
- 10β-hydroxy-Δ8-tetrahydrocannabinol154
- 10a-α-hydroxy-10-oxo-Δ8-tetrahydrocannabinol154
- Δ9-THCAA ((-)-Δ9-trans-tetrahydrocannabinolic acid A)154
- Δ9-THCAB ((-)-Δ9-trans-tetrahydrocannabinolic acid B)154
- Δ9-THC-C4 ((-)-Δ9-trans-tetrahydrocannabinol-C4)154
- Δ9-THCAA-C4 ((-)-Δ9-trans-tetrahydrocannabinolic acid A-C4)154
- Δ9-THCO or Δ9-THC1 ((-)-Δ9-trans-tetrahydrocannabiorcol)154
- Δ9-THCOAA ((-)-Δ9-trans-tetrahydrocannabiorcolic acid)154
- Δ9-THC aldehyde ((-)-Δ9-trans-tetrahydrocannabinal)154
- β-Fenchyl (-)-Δ9-trans-tetrahydrocannabinolate154
- α-Fenchyl (-)-Δ9-trans-tetrahydrocannabinolate154
- Epi-bornyl (-)-Δ9-trans-tetrahydrocannabinolate154
- Bornyl (-)-Δ9-trans-tetrahydrocannabinolate154
- α-Terpenyl (-)-Δ9-trans-tetrahydrocannabinolate154
- 4-terpenyl (-)-Δ9-trans-tetrahydrocannabinolate154
- α-Cadinyl (-)-Δ9-trans-tetrahydrocannabinolate154
- γ-Eudesmyl (-)-Δ9-trans-tetrahydrocannabinolate154
- 8α-Hydroxy-(-)-Δ9-trans-tetrahydrocannabinol154
- 8β-Hydroxy-(-)-Δ9-trans-tetrahydro cannabinol154
- 11-Acetoxy-(-)-Δ9-trans-tetrahydrocannabinolic acid154
- 8-oxo-(-)-Δ9-trans-tetrahydrocannabinol154
- (-)-Δ9-trans-tetrahydrocannabiphorol154
- (-)-Δ9-trans-tetrahydrocannabihexol154
- cis-Δ9-THC ((-)-Δ9-cis-(6aS,10aR)-tetrahydro-cannabinol)154
- cis-iso-Δ7-THCV ((±)-Δ7-cis-isotetrahydrocannabivarin-C3)154
- trans-iso-Δ7-THCV ((-)-Δ7-trans-(1R,3R,6R)-isotetrahydrocannabivarin-C3)154
- trans-iso-Δ7-THC ((-)-Δ7-trans-(1R,3R,6R)-isotetrahydrocannabinol-C5)154
- cis-Δ9-THC154
- 9α-Hydroxy-10-oxo-Δ6a,10a-THC154
1.2.1.2. CBD-type cannabinoids (cannabidiols)
CBD-type cannabinoids (cannabidiols)
- CBD (cannabidiol, (-)-trans-(1R,6R) or ((-)-CBD){{González-Mariscal I, Carmona-Hidalgo B, Winkler M, Unciti-Broceta JD, Escamilla A, Gómez-Cañas M, Fernández-Ruiz J, Fiebich BL, Romero-Zerbo SY, Bermúdez-Silva FJ, Collado JA, Muñoz E (2021): (+)-trans-cannabidiol-2-hydroxy pentyl is a dual CB1Rantagonist/CB2Ragonist that prevents diabetic nephropathy in mice. Pharmacol Res. 2021 Jul;169:105492. doi: 10.1016/j.phrs.2021.105492. PMID: 34019978.}})
- increased AEA155
- inhibits FAAH156
- non-psychoactive
- Effect
- antioxidant
- anti-inflammatory
- antispasmodic
- antidepressant157
- antipsychotic158155
- antitumoral
- neuroprotective
- helpful for
- PTSD
- Epilepsy (FDA approval)
- did not reduce blood pressure in SHR159
- reduced memory problems in mice kept in isolation157
- CBD inhibits the acute effects of THC23
- Cannabis with an increased CBD content caused fewer memory problems than cannabis with a low CBD content.160
- pain-relieving
- the TRPV1 antagonist capsazepine blocked the pain-relieving effect88
- reduced anxiety not in isolated mice and increased anxiety even in control animals157
- inhibits CES1A, which breaks down MPH. CBD thus slows down the breakdown of MPH.151
- Among other things, CBD binds to10153161162
- HT1A (agonist)
- CB1R (negative allosteric modulator)148
- CBD thus reduces the binding capacity of CB1R for agonists. CBD thus has an antipsychotropic effect, among other things.
- CB2R: contradictory statements
- orphane GPCR, e.g. GPR55 (antagonist), GBP18
- TRP channels
- TRPV1 (transient receptor potential (TRP)-vanilloid type 1; activation/desensitization)
- TRPV2 (vanilloid type 2; activation/desensitization)
- TRPA1 (ankyrin type 1; activation/desensitization)
- TRPM8 (melastatin type 8; inhibition)
- t-type voltage-activated Ca 2+ channels (Ca v3.2, inhibition)
- PPARγ (PPAR-gamma; weak agonist)165
- FAAH (escapement)166
- CBD thus indirectly increases anandamide and 2-AG, which are broken down by FAAH
- α3-glycine receptors167
- Binding to spinal α3-GlyR is thought to mediate the pain-relieving effect of CBD168
- the synthesized (+)-enantiomer of CBD and its derivative (+)-CBD-hydroxypentylester ((+)-CBD-HPE) showed stronger CB1R and CB2R binding and functional activities than the respective (-)-enantiomers169
- CBDV (cannabidivarin)153
- Propyl homologue of CBD
- inhibits NAAA, but not FAAH166
- CBDA (cannabidiolic acid)10
- non-psychoactive
- Precursor of CBD
- PPAR-α and PPAR-γ agonist170
- Effect
- Relieves nausea and inflammation (much more effective than CBD)
- anti-inflammatory
- anti-cancer
- Effect of CBDA to be enhanced by Δ9-THC
- CBDA-C5154
- CBDM-C5 (cannabidiol monomethyl ether)154
- CBDM154
- CBD-C4154
- CBDV-C3 (cannabidivarin)154
- CBDVA (cannabidivarinic acid)154
- CBD-C1 (Cannabidiorcol)154154
- CBDH (cannabidihexol)154
- CBDP (cannabidiphorol)154
- CBDD (cannabitwinol, CBD dimer from the hexane extract of hemp)154
1.2.1.3. CBC-type cannabinoids (cannabichromenes)
CBC-type cannabinoids (cannabichromenes)
- CBC (Cannabichromene)
- Effect
- Neurogenesis
- antiviral
- analgesic
- antidepressant
- antinociceptive
- anti-inflammatory
- selective CB2R agonist171
- Effect
- CBCA (cannabichromenic acid, carboxylic acid derivative of CBC)154
- ± CBCV (Cannabivarichromene)154
-
- CBCV cannabichromevarin)154
- CBCVA (cannabichromevaric acid)154
- (±)-4-Acetoxycannabichromene (cannabichrome derivative)154
- (±)-3“-hydroxy-Δ4“-cannabichromene (cannabichrome derivative)154
- (-)-7-Hydroxycannabichroman (cannabichrome derivative)154
- CBC-C3-Derivat (2-Methyl-2-(4-methyl-2-pentyl)-7-propyl-2H-1-benzopyran-5-ol)154
1.2.1.4. CBCN-type cannabinoids (cannabichromanones)
CBCN-type cannabinoids (cannabichromanones)
1.2.1.5. CBL-type cannabinoids (cannabicyclols)
CBL-type cannabinoids (cannabicyclols)
1.2.1.6. CBE-type cannabinoids (cannabielsoins)
CBE-type cannabinoids (cannabielsoins)
1.2.1.7. CBN-type cannabinoids (cannabinols)
CBN-type cannabinoids (cannabinols)
- CBN (cannabinol)10
- Effect
- sleep-promoting
- antibacterial
- appetizing
- pain-relieving
- weakly anticonvulsant
- Effect
- Cannabinolic acid149
- CBNM (cannabinol methyl ether)149
- Cannabinol-Ca149
- CBV (Cannabivarin)149
- Cannabiorcol149
- 8-Hydroxycannabinol154
- 8-Hydroxycannabinolic acid A154
- 1′S-hydroxy-cannabinol154
- 4-terpenyl cannabinolate154
- 10α-Hydroxy-Δ9,11-hexahydrocannabinol154
- 9β,10β-epoxyhexahydrocannabinol154
- 9α-Hydroxyhexahydrocannabinol154
- 7-Oxo-9α-hydroxyhexa-hydrocannabinol154
- 10α-Hydroxyhexahydrocannabinol154
- 10aR-hydroxyhexahydrocannabinol154
1.2.1.8. CBT-type cannabinoids (cannabitriols)
CBT-type cannabinoids (cannabitriols)
1.2.1.9. CBND-type cannabinoids (cannabinodiols)
1.2.1.10. CBG-type cannabinoids (cannabigerols)
CBG-type cannabinoids (cannabigerols)
- (E)-CBG (cannabigerol)10154
- low affinity to CB1R and CB2R
- weak TRPV1 and TRPV2 agonist
- blocks the 5HT1A receptor
- α-2-adrenoceptor agonist
- lowers blood pressure in mice via α-2 adrenoceptor172
- PPAR-α and PPAR-γ agonist170
- Effect
- analgesic
- anti-inflammatory
- lowers intraocular pressure
- antibiotic
- appetizing
- neuroprotective
- promotes bone growth
- Vasodilator
- antidepressant
- CBGA (cannabigerolic acid)10
- the first cannabinoid synthesized in the biosynthetic pathway of Δ9-THCAA154
- CBGAM (monomethyl ether of CBGAA)154
- CBGM (monomethyl ether of (E)-CBG)154
- CBGV (cannabigerovarin)154
- CBGVA (cannabigerovarinic acid)154
- (Z)CBGA (cannabinerolic acid)154
- 5-Acetyl-4-hydroxy-cannabigerol154
- γ-Eudesmyl cannabigerolate (an ester of CBGA)154
- α-Cadinyl cannabigerolate (an ester of CBGA)154
- (±)-6,7-trans-epoxycannabigerolic acid (epoxy-cannabigerol derivative)154
- (±)-6,7-cis-epoxycannabigerolic acid (epoxy-cannabigerol derivative)154
- (±)-6,7-cis-epoxycannabigerol (epoxy-cannabigerol derivative)154
- (±)-6,7-trans-Epxoycannabigerol (epoxy-cannabigerol derivative)154
- Camagerol (polar dihydroxycannabigerol derivative)154
- Sesquicannabigerol (farnesyl prenylogue of cannabigerol)154
- PPAR-α and PPAR-γ agonist170
1.2.1.11. Unclear to which type
We have not yet been able to assign these cannabinoids to any type
- CBL (cannabicyclol)
- Cannabisol154 173
- DCBF-C5 (Dehydrocannabifuran)154
- CBF-C5 (cannabifuran)154
- OH-iso-HHCV-C3 (8-hydroxy-isohexahydrocannabivirine)154
- OTHC (10-oxo-Δ6a(10a)-tetrahydro-cannabinol)154
- Cannabicitran154
- CBCON-C5 (cannabicoumaronone)154154
- CBR (Cannabiripsol)154
- CBTT (Cannabitetrol)154
- DCBF-C5 (dehydrocannabifuran)154
- CBF-C5 (cannabifuran)154
- OTHC154
- CBT (Cannabicitran)154
- CBR (Cannabiripsol)154
- CBTT (Cannabitetrol)154
- 4-acetoxy-2-geranyl-5-hydroxy-3-n-pentylphenol154
- 2-Geranyl-5-hydroxy-3-n-pentyl-1,4-benzoquinone154
- 5-Acetoxy-6-geranyl-3-n-pentyl-1,4-benzoquinone154
- CBM (Cannabimovon)154
- from a non-psychotropic sativa strain
- is probably formed from CBD
- CBX (cannabioxepane, tetracyclic cannabinoid)154
1.2.2. Cannabinoids from other plants
Phytocannabinoids from plants other than hemp
In addition to hemp, other plants also contain cannabinoids:
- Yangonin from the kava plant (Piper methysticum)
- weak CB1R agonist174
- various catechins from the tea plant (Camellia sinensis)
- weak CB1R agonist175
- N-isobutylamide from Echinacea
- selective CB2R agonist176
- Beta-caryophyllene from various spice plants
- selective CB2R agonist177
- Khat (Catha Edulis, Vahl)
1.3. Synthetic cannabinoids (cannabinoid mimetics)
Cannabinoids can also be produced synthetically.180 Several hundred SC are known, belonging to different chemical classes. They can be non-selective or highly selective agonists at the CB1 or CB2 receptor or both. As a rule, they are lipophilic molecules, almost all of which have a much greater binding affinity to the CBR than THC or endocannabinoids.181 Due to the strong CB1R binding and the resulting psychoactive effect, synthetic cannabinoids are not useful for medical purposes.10
Between 2005 and 2023, synthetic cannabinoids accounted for the largest share of new psychoactive substances reported for the first time in the EU, at 28%.182 They are also known as synthetic cannabinoid receptor agonists. “Spice” and “K2” are representatives of this group.
Synthetic cathinones (a class of β-keto-phenethylamine derivatives) accounted for the second largest proportion at 18%. These are derived from S-cathinone, an alkaloid from khat (Catha edulis), and have structural and pharmacological similarities to amphetamine.182 Both groups represent a relevant proportion of synthetic drugs.
In view of the considerable effects and side effects, including deaths, even in clinical studies, the risk of uncontrolled intake can barely be overestimated.
The use of synthetic cannabinoids is associated with much more frequent hospitalizations and deaths due to the much stronger CB1R effect than THC. Common side effects are181
- Panic attacks
- States of anxiety
- Paranoia
- Hallucinations
- Psychoses
- Depression
- Impairment of executive functions
- reduced density of gray matter
- Impairment of the working memory
- High blood pressure
- Hypotension
- Bradycardia
- Tachycardia
- Restlessness
- Nausea, vomiting
- Stroke
- Myocardial infarction
- Cardiomyopathy
- Cardiac arrhythmia
- Cardiac arrest
Synthetic cannabinoids include:10
- Dronabinol
- Agonist
- Nabilon
- Agonist
- Rimonabant, SR141716A, Acomplica (5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide)
- selective CB1R antagonist
- acts like an inverse agonist, which is often associated with side effects, as is also the case here183
- 2-isopropyl-5-methyl-1-[2,6-dihydroxy-4-(1,2-dimethylheptyl)phenyl]cyclohex-1-ene
AB-FUBINACA (N-[(2S)-1-amino-3-methyl-1-oxo-2-butanyl]-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide), an indazole carboxamide derivative181 - AM-2201 (AM: developed by Alexandros Makriyannis)
- AM-2233
- CRB-913
- CB1R inverse agonist184
- CP-47,497
- CP-55940
- CB1R agonist
- HU-210 ((6aR)[-trans-3-(1,1-dimethylheptyl)-6a, 7,10,10a-tetrahydro-1-hydroxy-6,6-dimethyl-6Hdibenzo[b,d]pyran-9-methanol), a cyclohexylphenol181
- more than 100 times greater binding affinity to CB1R and CB2R than THC
- JWH-018 (-pentyl-3-(1-naphthoyl)indole), an aminoalkylindole; (JWH: developed by John W. Huffman)181
- JWH-073
- JWH-122
- JWH-210181
- WIN 55,212,2, WIN2 ((R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphtalenylmethanon)185
- Agonist
- XLR-144
- ((-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)-phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol)185
- Agonist
1.4. Endocannabinoidome: the extended cannabinoid system
In addition to the cannabinoid system in the narrower sense, an extended cannabinoid system consisting of endocannabinoid-like mediators has been described. This so-called endocannabinoidome comprises more than 100 lipid mediators, 20 enzymes and 20 receptors.153186 These include several long-chain fatty acid amides and fatty acid amide esters:
- the N-acylethanolamines, NAEs (related to anandamide)
- the 2-acylglycerols, 2-AcGs (related to 2-AG)
- the N-acyl amino acids
- acylated neurotransmitters such as N-acyl dopamine and N-acyl serotonin
- the primary fatty acid amides.
These lipid mediators often bind to other receptors such as
- Transient receptor channel type 1, type 2 and type 4 (TRPV1, TRPV2, TRPV4)
- Orphan G-Protein-coupled Receptors (GPR18, GPR55, GPR110, GPR119)
- ligand-activated ion channels
- Peroxisome proliferator-activated nuclear receptors (PPAR-α, PPAR-γ)
Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y (2012): Endocannabinoid signaling and synaptic function. Neuron. 2012 Oct 4;76(1):70-81. doi: 10.1016/j.neuron.2012.09.020. PMID: 23040807; PMCID: PMC3517813. REVIEW ↥
Ohno-Shosaku T, Tanimura A, Hashimotodani Y, Kano M (2012): Endocannabinoids and retrograde modulation of synaptic transmission. Neuroscientist. 2012 Apr;18(2):119-32. doi: 10.1177/1073858410397377. PMID: 21531987. REVIEW ↥
Bloomfield MA, Ashok AH, Volkow ND, Howes OD (2016): The effects of Δ9-tetrahydrocannabinol on the dopamine system. Nature. 2016 Nov 17;539(7629):369-377. doi: 10.1038/nature20153. PMID: 27853201; PMCID: PMC5123717. REVIEW ↥
Watson JE, Kim JS, Das A (2019): Emerging class of omega-3 fatty acid endocannabinoids & their derivatives. Prostaglandins Other Lipid Mediat. 2019 Aug;143:106337. doi: 10.1016/j.prostaglandins.2019.106337. PMID: 31085370; PMCID: PMC6685292. REVIEW ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥
Ghanbari MM, Loron AG, Sayyah M (2021): The ω-3 endocannabinoid docosahexaenoyl ethanolamide reduces seizure susceptibility in mice by activating cannabinoid type 1 receptors. Brain Res Bull. 2021 May;170:74-80. doi: 10.1016/j.brainresbull.2021.02.011. PMID: 33581310. ↥
Kim HY, Spector AA (2013): Synaptamide, endocannabinoid-like derivative of docosahexaenoic acid with cannabinoid-independent function. Prostaglandins Leukot Essent Fatty Acids. 2013 Jan;88(1):121-5. doi: 10.1016/j.plefa.2012.08.002. PMID: 22959887; PMCID: PMC3541447. REVIEW ↥
Grabiec U, Dehghani F (2017): N-Arachidonoyl Dopamine: A Novel Endocannabinoid and Endovanilloid with Widespread Physiological and Pharmacological Activities. Cannabis Cannabinoid Res. 2017 Jul 1;2(1):183-196. doi: 10.1089/can.2017.0015. PMID: 29082315; PMCID: PMC5627668. REVIEW ↥
Hind WH, Tufarelli C, Neophytou M, Anderson SI, England TJ, O’Sullivan SE (2015): Endocannabinoids modulate human blood-brain barrier permeability in vitro. Br J Pharmacol. 2015 Jun;172(12):3015-27. doi: 10.1111/bph.13106. PMID: 25651941; PMCID: PMC4459020. ↥ ↥ ↥
Redmond WJ, Cawston EE, Grimsey NL, Stuart J, Edington AR, Glass M, Connor M (2016): Identification of N-arachidonoyl dopamine as a highly biased ligand at cannabinoid CB1 receptors. Br J Pharmacol. 2016 Jan;173(1):115-27. doi: 10.1111/bph.13341. PMID: 26398720; PMCID: PMC4813372. ↥
Kumar U (2024): Cannabinoids: Role in Neurological Diseases and Psychiatric Disorders. Int J Mol Sci. 2024 Dec 27;26(1):152. doi: 10.3390/ijms26010152. PMID: 39796008; PMCID: PMC11720483. REVIEW ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥
Kruk-Slomka M, Dzik A, Budzynska B, Biala G (2017): Endocannabinoid System: the Direct and Indirect Involvement in the Memory and Learning Processes-a Short Review. Mol Neurobiol. 2017 Dec;54(10):8332-8347. doi: 10.1007/s12035-016-0313-5. PMID: 27924524; PMCID: PMC5684264. REVIEW ↥ ↥ ↥ ↥
Porter AC, Sauer JM, Knierman MD, Becker GW, Berna MJ, Bao J, Nomikos GG, Carter P, Bymaster FP, Leese AB, Felder CC (2002): Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther. 2002 Jun;301(3):1020-4. doi: 10.1124/jpet.301.3.1020. PMID: 12023533. ↥
Blanco E, Galeano P, Holubiec MI, Romero JI, Logica T, Rivera P, Pavón FJ, Suarez J, Capani F, Rodríguez de Fonseca F (2015): Perinatal asphyxia results in altered expression of the hippocampal acylethanolamide/endocannabinoid signaling system associated to memory impairments in postweaned rats. Front Neuroanat. 2015 Nov 3;9:141. doi: 10.3389/fnana.2015.00141. PMID: 26578900; PMCID: PMC4630311. ↥ ↥ ↥ ↥
Costa A, Cristiano C, Cassano T, Gallelli CA, Gaetani S, Ghelardini C, Blandina P, Calignano A, Passani MB, Provensi G (2018): Histamine-deficient mice do not respond to the antidepressant-like effects of oleoylethanolamide. Neuropharmacology. 2018 Jun;135:234-241. doi: 10.1016/j.neuropharm.2018.03.033. PMID: 29596898. ↥ ↥
Overton HA, Babbs AJ, Doel SM, Fyfe MC, Gardner LS, Griffin G, Jackson HC, Procter MJ, Rasamison CM, Tang-Christensen M, Widdowson PS, Williams GM, Reynet C (2006): Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab. 2006 Mar;3(3):167-75. doi: 10.1016/j.cmet.2006.02.004. PMID: 16517404. ↥
Melis M, Pillolla G, Luchicchi A, Muntoni AL, Yasar S, Goldberg SR, Pistis M (2008): Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors. J Neurosci. 2008 Dec 17;28(51):13985-94. doi: 10.1523/JNEUROSCI.3221-08.2008. PMID: 19091987; PMCID: PMC3169176. ↥
Provensi G, Coccurello R, Umehara H, Munari L, Giacovazzo G, Galeotti N, Nosi D, Gaetani S, Romano A, Moles A, Blandina P, Passani MB (2014): Satiety factor oleoylethanolamide recruits the brain histaminergic system to inhibit food intake. Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11527-32. doi: 10.1073/pnas.1322016111. PMID: 25049422; PMCID: PMC4128140. ↥
Wei BQ, Mikkelsen TS, McKinney MK, Lander ES, Cravatt BF (2006): A second fatty acid amide hydrolase with variable distribution among placental mammals. J Biol Chem. 2006 Dec 1;281(48):36569-78. doi: 10.1074/jbc.M606646200. PMID: 17015445. ↥ ↥ ↥ ↥
Hill MN, McLaughlin RJ, Bingham B, Shrestha L, Lee TT, Gray JM, Hillard CJ, Gorzalka BB, Viau V (2010): Endogenous cannabinoid signaling is essential for stress adaptation. Proc Natl Acad Sci U S A. 2010 May 18;107(20):9406-11. doi: 10.1073/pnas.0914661107. PMID: 20439721; PMCID: PMC2889099. ↥
Kim J, Carlson ME, Kuchel GA, Newman JW, Watkins BA (2016): Dietary DHA reduces downstream endocannabinoid and inflammatory gene expression and epididymal fat mass while improving aspects of glucose use in muscle in C57BL/6J mice. Int J Obes (Lond). 2016 Jan;40(1):129-37. doi: 10.1038/ijo.2015.135. PMID: 26219414; PMCID: PMC4722239. ↥
Di Bartolomeo M, Stark T, Maurel OM, Iannotti FA, Kuchar M, Ruda-Kucerova J, Piscitelli F, Laudani S, Pekarik V, Salomone S, Arosio B, Mechoulam R, Maccarrone M, Drago F, Wotjak CT, Di Marzo V, Vismara M, Dell’Osso B, D’Addario C, Micale V (2021): Crosstalk between the transcriptional regulation of dopamine D2 and cannabinoid CB1 receptors in schizophrenia: Analyses in patients and in perinatal Δ9-tetrahydrocannabinol-exposed rats. Pharmacol Res. 2021 Feb;164:105357. doi: 10.1016/j.phrs.2020.105357. PMID: 33285233. ↥
Di Bartolomeo M, Stark T, Di Martino S, Iannotti FA, Ruda-Kucerova J, Romano GL, Kuchar M, Laudani S, Palivec P, Piscitelli F, Wotjak CT, Bucolo C, Drago F, Di Marzo V, D’Addario C, Micale V (2023): The Effects of Peripubertal THC Exposure in Neurodevelopmental Rat Models of Psychopathology. Int J Mol Sci. 2023 Feb 15;24(4):3907. doi: 10.3390/ijms24043907. PMID: 36835313; PMCID: PMC9962163. ↥
Lu HC, Mackie K (2016): An Introduction to the Endogenous Cannabinoid System. Biol Psychiatry. 2016 Apr 1;79(7):516-25. doi: 10.1016/j.biopsych.2015.07.028. PMID: 26698193; PMCID: PMC4789136. REVIEW ↥ ↥ ↥ ↥ ↥ ↥
Okamoto Y, Wang J, Morishita J, Ueda N (2007): Biosynthetic pathways of the endocannabinoid anandamide. Chem Biodivers. 2007 Aug;4(8):1842-57. doi: 10.1002/cbdv.200790155. PMID: 17712822. REVIEW ↥ ↥
Liu J, Wang L, Harvey-White J, Huang BX, Kim HY, Luquet S, Palmiter RD, Krystal G, Rai R, Mahadevan A, Razdan RK, Kunos G (2008): Multiple pathways involved in the biosynthesis of anandamide. Neuropharmacology. 2008 Jan;54(1):1-7. doi: 10.1016/j.neuropharm.2007.05.020. PMID: 17631919; PMCID: PMC2219543. ↥ ↥ ↥ ↥
Di Marzo V, Fontana A, Cadas H, Schinelli S, Cimino G, Schwartz JC, Piomelli D (1994): Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature. 1994 Dec 15;372(6507):686-91. doi: 10.1038/372686a0. PMID: 7990962. ↥
Centonze D, Battistini L, Maccarrone M (2008): The endocannabinoid system in peripheral lymphocytes as a mirror of neuroinflammatory diseases. Curr Pharm Des. 2008;14(23):2370-42. doi: 10.2174/138161208785740018. PMID: 18781987. REVIEW ↥ ↥ ↥ ↥ ↥ ↥ ↥
Borsani E, Labanca M, Bianchi R, Rodella LF (2007): AM404 decreases Fos-immunoreactivity in the spinal cord in a model of inflammatory pain. Brain Res. 2007 Jun 4;1152:87-94. doi: 10.1016/j.brainres.2007.03.071. PMID: 17459353. ↥
Redlich C, Dlugos A, Hill MN, Patel S, Korn D, Enneking V, Foerster K, Arolt V, Domschke K, Dannlowski U, Redlich R (2021): The endocannabinoid system in humans: significant associations between anandamide, brain function during reward feedback and a personality measure of reward dependence. Neuropsychopharmacology. 2021 Apr;46(5):1020-1027. doi: 10.1038/s41386-020-00870-x. PMID: 33007775; PMCID: PMC8114914. n = 30 ↥ ↥
Di Marzo V, De Petrocellis L (2012): Why do cannabinoid receptors have more than one endogenous ligand? Philos Trans R Soc Lond B Biol Sci. 2012 Dec 5;367(1607):3216-28. doi: 10.1098/rstb.2011.0382. PMID: 23108541; PMCID: PMC3481524. REVIEW ↥ ↥ ↥
Witkin JM, Tzavara ET, Nomikos GG (2005): A role for cannabinoid CB1 receptors in mood and anxiety disorders. Behav Pharmacol. 2005 Sep;16(5-6):315-31. doi: 10.1097/00008877-200509000-00005. PMID: 16148437. REVIEW ↥ ↥ ↥
Peters KZ, Oleson EB, Cheer JF (2021): A Brain on Cannabinoids: The Role of Dopamine Release in Reward Seeking and Addiction. Cold Spring Harb Perspect Med. 2021 Jan 4;11(1):a039305. doi: 10.1101/cshperspect.a039305. PMID: 31964646; PMCID: PMC7778214. REVIEW ↥
Kellogg R, Mackie K, Straiker A (2009): Cannabinoid CB1 receptor-dependent long-term depression in autaptic excitatory neurons. J Neurophysiol. 2009 Aug;102(2):1160-71. doi: 10.1152/jn.00266.2009. PMID: 19494194; PMCID: PMC2724344. ↥
Kelley BG, Thayer SA (2004): Delta 9-tetrahydrocannabinol antagonizes endocannabinoid modulation of synaptic transmission between hippocampal neurons in culture. Neuropharmacology. 2004 Apr;46(5):709-15. doi: 10.1016/j.neuropharm.2003.11.005. PMID: 14996548. ↥
Straiker A, Mackie K (2005): Depolarization-induced suppression of excitation in murine autaptic hippocampal neurones. J Physiol. 2005 Dec 1;569(Pt 2):501-17. doi: 10.1113/jphysiol.2005.091918. PMID: 16179366; PMCID: PMC1464237. ↥
Covey DP, Yocky AG (2021): Endocannabinoid Modulation of Nucleus Accumbens Microcircuitry and Terminal Dopamine Release. Front Synaptic Neurosci. 2021 Aug 23;13:734975. doi: 10.3389/fnsyn.2021.734975. PMID: 34497503; PMCID: PMC8419321. REVIEW ↥ ↥ ↥
Hillard CJ, Huang H, Vogt CD, Rodrigues BE, Neumann TS, Sem DS, Schroeder F, Cunningham CW (2017): Endocannabinoid Transport Proteins: Discovery of Tools to Study Sterol Carrier Protein-2. Methods Enzymol. 2017;593:99-121. doi: 10.1016/bs.mie.2017.06.017. PMID: 28750817; PMCID: PMC6904209. ↥ ↥
Liedhegner ES, Vogt CD, Sem DS, Cunningham CW, Hillard CJ (2014): Sterol carrier protein-2: binding protein for endocannabinoids. Mol Neurobiol. 2014 Aug;50(1):149-58. doi: 10.1007/s12035-014-8651-7. PMID: 24510313; PMCID: PMC4450258. ↥
Lin YF (2021): Potassium channels as molecular targets of endocannabinoids. Channels (Austin). 2021 Dec;15(1):408-423. doi: 10.1080/19336950.2021.1910461. PMID: 34282702; PMCID: PMC8293965. REVIEW ↥ ↥
Morales P, Reggio PH (2017): An Update on Non-CB1, Non-CB2 Cannabinoid Related G-Protein-Coupled Receptors. Cannabis Cannabinoid Res. 2017 Oct 1;2(1):265-273. doi: 10.1089/can.2017.0036. PMID: 29098189; PMCID: PMC5665501. REVIEW ↥ ↥ ↥ ↥ ↥
Xiong W, Hosoi M, Koo BN, Zhang L (2008): Anandamide inhibition of 5-HT3A receptors varies with receptor density and desensitization. Mol Pharmacol. 2008 Feb;73(2):314-22. doi: 10.1124/mol.107.039149. PMID: 17993512. ↥
Hanske A, Nazaré M, Grether U (2025): Chemical Probes for Investigating the Endocannabinoid System. Curr Top Behav Neurosci. 2025 Jan 3. doi: 10.1007/7854_2024_563. PMID: 39747798. ↥ ↥ ↥
Ueda N, Tsuboi K, Uyama T (2010): N-acylethanolamine metabolism with special reference to N-acylethanolamine-hydrolyzing acid amidase (NAAA). Prog Lipid Res. 2010 Oct;49(4):299-315. doi: 10.1016/j.plipres.2010.02.003. PMID: 20152858. REVIEW ↥
Tsuboi K, Sun YX, Okamoto Y, Araki N, Tonai T, Ueda N (2005): Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase. J Biol Chem. 2005 Mar 25;280(12):11082-92. doi: 10.1074/jbc.M413473200. PMID: 15655246. ↥ ↥ ↥
Snider NT, Walker VJ, Hollenberg PF (2010): Oxidation of the endogenous cannabinoid arachidonoyl ethanolamide by the cytochrome P450 monooxygenases: physiological and pharmacological implications. Pharmacol Rev. 2010 Mar;62(1):136-54. doi: 10.1124/pr.109.001081. PMID: 20133390; PMCID: PMC2835397. REVIEW ↥
Sridar C, Snider NT, Hollenberg PF (2011): Anandamide oxidation by wild-type and polymorphically expressed CYP2B6 and CYP2D6. Drug Metab Dispos. 2011 May;39(5):782-8. doi: 10.1124/dmd.110.036707. PMID: 21289075; PMCID: PMC3082373. ↥
Di Marzo V (2008): Endocannabinoids: synthesis and degradation. Rev Physiol Biochem Pharmacol. 2008;160:1-24. doi: 10.1007/112_0505. PMID: 18481028. REVIEW ↥ ↥
Woodward DF, Liang Y, Krauss AH (2008): Prostamides (prostaglandin-ethanolamides) and their pharmacology. Br J Pharmacol. 2008 Feb;153(3):410-9. doi: 10.1038/sj.bjp.0707434. PMID: 17721551; PMCID: PMC2241799. REVIEW ↥
Hermanson DJ, Hartley ND, Gamble-George J, Brown N, Shonesy BC, Kingsley PJ, Colbran RJ, Reese J, Marnett LJ, Patel S (2013): Substrate-selective COX-2 inhibition decreases anxiety via endocannabinoid activation. Nat Neurosci. 2013 Sep;16(9):1291-8. doi: 10.1038/nn.3480. PMID: 23912944; PMCID: PMC3788575. ↥ ↥
Hermanson DJ, Gamble-George JC, Marnett LJ, Patel S (2014): Substrate-selective COX-2 inhibition as a novel strategy for therapeutic endocannabinoid augmentation. Trends Pharmacol Sci. 2014 Jul;35(7):358-67. doi: 10.1016/j.tips.2014.04.006. PMID: 24845457; PMCID: PMC4074568. REVIEW ↥ ↥
Di Marzo V, Stella N, Zimmer A (2015): Endocannabinoid signalling and the deteriorating brain. Nat Rev Neurosci. 2015 Jan;16(1):30-42. doi: 10.1038/nrn3876. PMID: 25524120; PMCID: PMC4471876. REVIEW ↥
Cravatt BF, Demarest K, Patricelli MP, Bracey MH, Giang DK, Martin BR, Lichtman AH (2001): Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9371-6. doi: 10.1073/pnas.161191698. PMID: 11470906; PMCID: PMC55427. ↥
Jiang HX, Ke BW, Liu J, Ma G, Hai KR, Gong DY, Yang Z, Zhou C (2019): Inhibition of Fatty Acid Amide Hydrolase Improves Depressive-Like Behaviors Independent of Its Peripheral Antinociceptive Effects in a Rat Model of Neuropathic Pain. Anesth Analg. 2019 Aug;129(2):587-597. doi: 10.1213/ANE.0000000000003563. PMID: 29863609. ↥
Murillo-Rodriguez E, Blanco-Centurion C, Sanchez C, Piomelli D, Shiromani PJ (2003): Anandamide enhances extracellular levels of adenosine and induces sleep: an in vivo microdialysis study. Sleep. 2003 Dec 15;26(8):943-7. doi: 10.1093/sleep/26.8.943. PMID: 14746372. ↥
Jones MR, Haggarty CJ, Petrie GN, Lunge AR, Morrison I, Hill MN, Heilig M, Mayo LM (2025): Endocannabinoid contributions to the perception of socially relevant, affective touch in humans. Neuropsychopharmacology. 2025 Jan 22. doi: 10.1038/s41386-025-02053-y. PMID: 39843850. ↥
Canseco-Alba A, Rodríguez-Manzo G (2014): Low anandamide doses facilitate male rat sexual behaviour through the activation of CB1 receptors. Psychopharmacology (Berl). 2014 Oct;231(20):4071-80. doi: 10.1007/s00213-014-3547-9. PMID: 24671517. ↥
Coelho AA, Lima-Bastos S, Gobira PH, Lisboa SF (2023): Endocannabinoid signaling and epigenetics modifications in the neurobiology of stress-related disorders. Neuronal Signal. 2023 Jul 25;7(2):NS20220034. doi: 10.1042/NS20220034. PMID: 37520658; PMCID: PMC10372471. REVIEW ↥ ↥
Zhang M, Wang T, Meng F, Jiang M, Wu S, Xu H (2024): The endocannabinoid system in the brain undergoes long-lasting changes following neuropathic pain. iScience. 2024 Nov 22;27(12):111409. doi: 10.1016/j.isci.2024.111409. PMID: 39717086; PMCID: PMC11664153. REVIEW ↥
Hill MN, Miller GE, Carrier EJ, Gorzalka BB, Hillard CJ (2009): Circulating endocannabinoids and N-acyl ethanolamines are differentially regulated in major depression and following exposure to social stress. Psychoneuroendocrinology. 2009 Sep;34(8):1257-62. doi: 10.1016/j.psyneuen.2009.03.013. PMID: 19394765; PMCID: PMC2716432. ↥
Hungund BL, Vinod KY, Kassir SA, Basavarajappa BS, Yalamanchili R, Cooper TB, Mann JJ, Arango V (2004): Upregulation of CB1 receptors and agonist-stimulated [35S]GTPgammaS binding in the prefrontal cortex of depressed suicide victims. Mol Psychiatry. 2004 Feb;9(2):184-90. doi: 10.1038/sj.mp.4001376. PMID: 14966476. ↥
Christensen R, Kristensen PK, Bartels EM, Bliddal H, Astrup A (2007): Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet. 2007 Nov 17;370(9600):1706-13. doi: 10.1016/S0140-6736(07)61721-8. Erratum in: Lancet. 2008 Feb 16;371(9612):558. PMID: 18022033. REVIEW ↥
Hill MN, Ho WS, Hillard CJ, Gorzalka BB (2008): Differential effects of the antidepressants tranylcypromine and fluoxetine on limbic cannabinoid receptor binding and endocannabinoid contents. J Neural Transm (Vienna). 2008 Dec;115(12):1673-9. doi: 10.1007/s00702-008-0131-7. PMID: 18974922; PMCID: PMC2992975. ↥
Song L, Wang H, Wang YJ, Wang JL, Zhu Q, Wu F, Zhang W, Jiang B (2018): Hippocampal PPARα is a novel therapeutic target for depression and mediates the antidepressant actions of fluoxetine in mice. Br J Pharmacol. 2018 Jul;175(14):2968-2987. doi: 10.1111/bph.14346. PMID: 29722018; PMCID: PMC6016645. ↥
Almeida V, Levin R, Peres FF, Suiama MA, Vendramini AM, Santos CM, Silva ND, Zuardi AW, Hallak JEC, Crippa JA, Abílio VC (2019): Role of the endocannabinoid and endovanilloid systems in an animal model of schizophrenia-related emotional processing/cognitive deficit. Neuropharmacology. 2019 Sep 1;155:44-53. doi: 10.1016/j.neuropharm.2019.05.015. PMID: 31103618. ↥
Surkin PN, Gallino SL, Luce V, Correa F, Fernandez-Solari J, De Laurentiis A (2018): Pharmacological augmentation of endocannabinoid signaling reduces the neuroendocrine response to stress. Psychoneuroendocrinology. 2018 Jan;87:131-140. doi: 10.1016/j.psyneuen.2017.10.015. PMID: 29065362. ↥
Mendiguren A, Pineda J (2004): Cannabinoids enhance N-methyl-D-aspartate-induced excitation of locus coeruleus neurons by CB1 receptors in rat brain slices. Neurosci Lett. 2004 Jun 3;363(1):1-5. doi: 10.1016/j.neulet.2004.02.073. PMID: 15157983. ↥
Roberts LA, Christie MJ, Connor M (2002): Anandamide is a partial agonist at native vanilloid receptors in acutely isolated mouse trigeminal sensory neurons. Br J Pharmacol. 2002 Oct;137(4):421-8. doi: 10.1038/sj.bjp.0704904. PMID: 12359623; PMCID: PMC1573524. ↥
Maccarrone M, Rossi S, Bari M, De Chiara V, Fezza F, Musella A, Gasperi V, Prosperetti C, Bernardi G, Finazzi-Agrò A, Cravatt BF, Centonze D (2008): Anandamide inhibits metabolism and physiological actions of 2-arachidonoylglycerol in the striatum. Nat Neurosci. 2008 Feb;11(2):152-9. doi: 10.1038/nn2042. PMID: 18204441. ↥
Brunkhorst-Kanaan N, Trautmann S, Schreiber Y, Thomas D, Kittel-Schneider S, Gurke R, Geisslinger G, Reif A, Tegeder I (2021): Sphingolipid and Endocannabinoid Profiles in Adult Attention Deficit Hyperactivity Disorder. Biomedicines. 2021 Sep 6;9(9):1173. doi: 10.3390/biomedicines9091173. PMID: 34572359; PMCID: PMC8467584. ↥
Li J, Kaminski NE, Wang DH (2003): Anandamide-induced depressor effect in spontaneously hypertensive rats: role of the vanilloid receptor. Hypertension. 2003 Mar;41(3 Pt 2):757-62. doi: 10.1161/01.HYP.0000051641.58674.F7. PMID: 12623992. ↥
Malinowska B, Kwolek G, Göthert M (2001): Anandamide and methanandamide induce both vanilloid VR1- and cannabinoid CB1 receptor-mediated changes in heart rate and blood pressure in anaesthetized rats. Naunyn Schmiedebergs Arch Pharmacol. 2001 Dec;364(6):562-9. doi: 10.1007/s00210-001-0498-6. PMID: 11770012. ↥
Martín Giménez VM, Moretton MA, Chiappetta DA, Salgueiro MJ, Fornés MW, Manucha W (2023): Polymeric Nanomicelles Loaded with Anandamide and Their Renal Effects as a Therapeutic Alternative for Hypertension Treatment by Passive Targeting. Pharmaceutics. 2023 Jan 3;15(1):176. doi: 10.3390/pharmaceutics15010176. PMID: 36678805; PMCID: PMC9864428. ↥
Calignano A, La Rana G, Beltramo M, Makriyannis A, Piomelli D (1997): Potentiation of anandamide hypotension by the transport inhibitor, AM404. Eur J Pharmacol. 1997 Oct 15;337(1):R1-2. doi: 10.1016/s0014-2999(97)01297-1. PMID: 9389389. ↥
Wheal AJ, Bennett T, Randall MD, Gardiner SM (2007): Cardiovascular effects of cannabinoids in conscious spontaneously hypertensive rats. Br J Pharmacol. 2007 Nov;152(5):717-24. doi: 10.1038/sj.bjp.0707410. PMID: 17700721; PMCID: PMC2190006. ↥ ↥
Bátkai S, Pacher P, Osei-Hyiaman D, Radaeva S, Liu J, Harvey-White J, Offertáler L, Mackie K, Rudd MA, Bukoski RD, Kunos G (2004): Endocannabinoids acting at cannabinoid-1 receptors regulate cardiovascular function in hypertension. Circulation. 2004 Oct 5;110(14):1996-2002. doi: 10.1161/01.CIR.0000143230.23252.D2. PMID: 15451779; PMCID: PMC2756479. ↥
Godlewski G, Alapafuja SO, Bátkai S, Nikas SP, Cinar R, Offertáler L, Osei-Hyiaman D, Liu J, Mukhopadhyay B, Harvey-White J, Tam J, Pacak K, Blankman JL, Cravatt BF, Makriyannis A, Kunos G (2010): Inhibitor of fatty acid amide hydrolase normalizes cardiovascular function in hypertension without adverse metabolic effects. Chem Biol. 2010 Nov 24;17(11):1256-66. doi: 10.1016/j.chembiol.2010.08.013. PMID: 21095576; PMCID: PMC3003779. ↥
Fride E, Mechoulam R (1993): Pharmacological activity of the cannabinoid receptor agonist, anandamide, a brain constituent. Eur J Pharmacol. 1993 Feb 9;231(2):313-4. doi: 10.1016/0014-2999(93)90468-w. PMID: 8384116. ↥
Martín Giménez VM, Mocayar Marón FJ, García S, Mazzei L, Guevara M, Yunes R, Manucha W (2021): Central nervous system, peripheral and hemodynamic effects of nanoformulated anandamide in hypertension. Adv Med Sci. 2021 Mar;66(1):72-80. doi: 10.1016/j.advms.2020.12.003. PMID: 33388673. ↥
Beltramo M, de Fonseca FR, Navarro M, Calignano A, Gorriti MA, Grammatikopoulos G, Sadile AG, Giuffrida A, Piomelli D (2000): Reversal of dopamine D(2) receptor responses by an anandamide transport inhibitor. J Neurosci. 2000 May 1;20(9):3401-7. doi: 10.1523/JNEUROSCI.20-09-03401.2000. PMID: 10777802; PMCID: PMC6773117. ↥
Centonze D, Bari M, Rossi S, Prosperetti C, Furlan R, Fezza F, De Chiara V, Battistini L, Bernardi G, Bernardini S, Martino G, Maccarrone M (2007): The endocannabinoid system is dysregulated in multiple sclerosis and in experimental autoimmune encephalomyelitis. Brain. 2007 Oct;130(Pt 10):2543-53. doi: 10.1093/brain/awm160. PMID: 17626034. ↥
Baker D, Pryce G, Croxford JL, Brown P, Pertwee RG, Makriyannis A, Khanolkar A, Layward L, Fezza F, Bisogno T, Di Marzo V (2001): Endocannabinoids control spasticity in a multiple sclerosis model. FASEB J. 2001 Feb;15(2):300-2. doi: 10.1096/fj.00-0399fje. PMID: 11156943. ↥ ↥
Giuffrida A, Parsons LH, Kerr TM, Rodríguez de Fonseca F, Navarro M, Piomelli D (1999): Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat Neurosci. 1999 Apr;2(4):358-63. doi: 10.1038/7268. PMID: 10204543. ↥ ↥
Aretxabala X, García Del Caño G, Barrondo S, López de Jesús M, González-Burguera I, Saumell-Esnaola M, Goicolea MA, Sallés J (2023): Endocannabinoid 2-Arachidonoylglycerol Synthesis and Metabolism at Neuronal Nuclear Matrix Fractions Derived from Adult Rat Brain Cortex. Int J Mol Sci. 2023 Feb 5;24(4):3165. doi: 10.3390/ijms24043165. PMID: 36834575; PMCID: PMC9965625. ↥
Hashimotodani Y, Ohno-Shosaku T, Tsubokawa H, Ogata H, Emoto K, Maejima T, Araishi K, Shin HS, Kano M (2005): Phospholipase Cbeta serves as a coincidence detector through its Ca2+ dependency for triggering retrograde endocannabinoid signal. Neuron. 2005 Jan 20;45(2):257-68. doi: 10.1016/j.neuron.2005.01.004. PMID: 15664177. ↥
Tanimura A, Yamazaki M, Hashimotodani Y, Uchigashima M, Kawata S, Abe M, Kita Y, Hashimoto K, Shimizu T, Watanabe M, Sakimura K, Kano M (2010): The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase alpha mediates retrograde suppression of synaptic transmission. Neuron. 2010 Feb 11;65(3):320-7. doi: 10.1016/j.neuron.2010.01.021. PMID: 20159446. ↥
Best AR, Regehr WG (2010): Identification of the synthetic pathway producing the endocannabinoid that mediates the bulk of retrograde signaling in the brain. Neuron. 2010 Feb 11;65(3):291-2. doi: 10.1016/j.neuron.2010.01.030. PMID: 20159441. ↥
Gao Y, Vasilyev DV, Goncalves MB, Howell FV, Hobbs C, Reisenberg M, Shen R, Zhang MY, Strassle BW, Lu P, Mark L, Piesla MJ, Deng K, Kouranova EV, Ring RH, Whiteside GT, Bates B, Walsh FS, Williams G, Pangalos MN, Samad TA, Doherty P (2010): Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J Neurosci. 2010 Feb 10;30(6):2017-24. doi: 10.1523/JNEUROSCI.5693-09.2010. PMID: 20147530; PMCID: PMC6634037. ↥
Mlost J, Wąsik A, Starowicz K (2019): Role of endocannabinoid system in dopamine signalling within the reward circuits affected by chronic pain. Pharmacol Res. 2019 May;143:40-47. doi: 10.1016/j.phrs.2019.02.029. PMID: 30831242. REVIEW ↥ ↥ ↥ ↥ ↥ ↥ ↥
Gianessi CA, Groman SM, Thompson SL, Jiang M, van der Stelt M, Taylor JR (2020): Endocannabinoid contributions to alcohol habits and motivation: Relevance to treatment. Addict Biol. 2020 May;25(3):e12768. doi: 10.1111/adb.12768. PMID: 31056846; PMCID: PMC7790504. ↥
Bedse G, Hill MN, Patel S (2020): 2-Arachidonoylglycerol Modulation of Anxiety and Stress Adaptation: From Grass Roots to Novel Therapeutics. Biol Psychiatry. 2020 Oct 1;88(7):520-530. doi: 10.1016/j.biopsych.2020.01.015. PMID: 32197779; PMCID: PMC7486996. REVIEW ↥
Sigel E, Baur R, Rácz I, Marazzi J, Smart TG, Zimmer A, Gertsch J (2011): The major central endocannabinoid directly acts at GABA(A) receptors. Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):18150-5. doi: 10.1073/pnas.1113444108. PMID: 22025726; PMCID: PMC3207709. ↥
Lisboa SF, Resstel LB, Aguiar DC, Guimarães FS (2008): Activation of cannabinoid CB1 receptors in the dorsolateral periaqueductal gray induces anxiolytic effects in rats submitted to the Vogel conflict test. Eur J Pharmacol. 2008 Sep 28;593(1-3):73-8. doi: 10.1016/j.ejphar.2008.07.032. PMID: 18691568. ↥
Almeida-Santos AF, Gobira PH, Rosa LC, Guimaraes FS, Moreira FA, Aguiar DC (2013): Modulation of anxiety-like behavior by the endocannabinoid 2-arachidonoylglycerol (2-AG) in the dorsolateral periaqueductal gray. Behav Brain Res. 2013 Sep 1;252:10-7. doi: 10.1016/j.bbr.2013.05.027. PMID: 23714073. ↥
Roitman MF, Wheeler RA, Wightman RM, Carelli RM (2008): Real-time chemical responses in the nucleus accumbens differentiate rewarding and aversive stimuli. Nat Neurosci. 2008 Dec;11(12):1376-7. doi: 10.1038/nn.2219. PMID: 18978779; PMCID: PMC3171188. ↥
Ungless MA (2004): Dopamine: the salient issue. Trends Neurosci. 2004 Dec;27(12):702-6. doi: 10.1016/j.tins.2004.10.001. PMID: 15541509. ↥
Tanda G, Pontieri FE, Di Chiara G (1997): Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science. 1997 Jun 27;276(5321):2048-50. doi: 10.1126/science.276.5321.2048. PMID: 9197269. ↥
French ED, Dillon K, Wu X (1997): Cannabinoids excite dopamine neurons in the ventral tegmentum and substantia nigra. Neuroreport. 1997 Feb 10;8(3):649-52. doi: 10.1097/00001756-199702100-00014. PMID: 9106740. ↥ ↥
Blankman JL, Simon GM, Cravatt BF (2007): A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol. 2007 Dec;14(12):1347-56. doi: 10.1016/j.chembiol.2007.11.006. PMID: 18096503; PMCID: PMC2692834. ↥
Shimizu T, Lu L, Yokotani K (2011): Endogenously generated 2-arachidonoylglycerol plays an inhibitory role in bombesin-induced activation of central adrenomedullary outflow in rats. Eur J Pharmacol. 2011 May 11;658(2-3):123-31. doi: 10.1016/j.ejphar.2011.02.023. PMID: 21371452. ↥
Long JZ, Nomura DK, Cravatt BF (2009): Characterization of monoacylglycerol lipase inhibition reveals differences in central and peripheral endocannabinoid metabolism. Chem Biol. 2009 Jul 31;16(7):744-53. doi: 10.1016/j.chembiol.2009.05.009. PMID: 19635411; PMCID: PMC2867454. ↥
Du H, Kwon IK, Kim J (2013): Neuregulin-1 impairs the long-term depression of hippocampal inhibitory synapses by facilitating the degradation of endocannabinoid 2-AG. J Neurosci. 2013 Sep 18;33(38):15022-31. doi: 10.1523/JNEUROSCI.5833-12.2013. PMID: 24048832; PMCID: PMC3776056. ↥
Fuss J, Bindila L, Wiedemann K, Auer MK, Briken P, Biedermann SV (2017): Masturbation to Orgasm Stimulates the Release of the Endocannabinoid 2-Arachidonoylglycerol in Humans. J Sex Med. 2017 Nov;14(11):1372-1379. doi: 10.1016/j.jsxm.2017.09.016. PMID: 29110806. ↥
Aloe L, Leon A, Levi-Montalcini R (1993): A proposed autacoid mechanism controlling mastocyte behaviour. Agents Actions. 1993;39 Spec No:C145-7. doi: 10.1007/BF01972748. PMID: 7505999. ↥
Rankin L, Fowler CJ (2020): The Basal Pharmacology of Palmitoylethanolamide. Int J Mol Sci. 2020 Oct 26;21(21):7942. doi: 10.3390/ijms21217942. PMID: 33114698; PMCID: PMC7662788. REVIEW ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥
Lo Verme J, Fu J, Astarita G, La Rana G, Russo R, Calignano A, Piomelli D (2005): The nuclear receptor peroxisome proliferator-activated receptor-alpha mediates the anti-inflammatory actions of palmitoylethanolamide. Mol Pharmacol. 2005 Jan;67(1):15-9. doi: 10.1124/mol.104.006353. PMID: 15465922. ↥
Ryberg E, Larsson N, Sjögren S, Hjorth S, Hermansson NO, Leonova J, Elebring T, Nilsson K, Drmota T, Greasley PJ (2007): The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol. 2007 Dec;152(7):1092-101. doi: 10.1038/sj.bjp.0707460. PMID: 17876302; PMCID: PMC2095107. ↥
De Gregorio D, Manchia M, Carpiniello B, Valtorta F, Nobile M, Gobbi G, Comai S (2019): Role of palmitoylethanolamide (PEA) in depression: Translational evidence: Special Section on “Translational and Neuroscience Studies in Affective Disorders”. Section Editor, Maria Nobile MD, PhD. This Section of JAD focuses on the relevance of translational and neuroscience studies in providing a better understanding of the neural basis of affective disorders. The main aim is to briefly summaries relevant research findings in clinical neuroscience with particular regards to specific innovative topics in mood and anxiety disorders. J Affect Disord. 2019 Aug 1;255:S0165-0327(18)31599-4. doi: 10.1016/j.jad.2018.10.117. PMID: 30391203. REVIEW ↥ ↥ ↥ ↥
Sá M, Castor M (2023): Therapeutic Use of Palmitoylethanolamide as an Anti-Inflammatory and Immunomodulator. Future Pharmacology, 3(4), 951-977. https://doi.org/10.3390/futurepharmacol3040058 REVIEW ↥ ↥ ↥
Guida F, Luongo L, Boccella S, Giordano ME, Romano R, Bellini G, Manzo I, Furiano A, Rizzo A, Imperatore R, Iannotti FA, D’Aniello E, Piscitelli F, Sca Rossi F, Cristino L, Di Marzo V, de Novellis V, Maione S (2017): Palmitoylethanolamide induces microglia changes associated with increased migration and phagocytic activity: involvement of the CB2 receptor. Sci Rep. 2017 Mar 23;7(1):375. doi: 10.1038/s41598-017-00342-1. PMID: 28336953; PMCID: PMC5428303. ↥
Artamonov M, Zhukov O, Shuba I, Storozhuk L, Khmel T, Klimashevsky V, Mikosha A, Gula N (2005): Incorporation of labelled N-acylethanolamine (NAE) into rat brain regions in vivo and adaptive properties of saturated NAE under x-ray irradiation. Ukr Biokhim Zh (1999). 2005;77(6):51-62. PMID: 19618742. ↥ ↥ ↥
Chicca A, Marazzi J, Nicolussi S, Gertsch J (2012): Evidence for bidirectional endocannabinoid transport across cell membranes. J Biol Chem. 2012 Oct 5;287(41):34660-82. doi: 10.1074/jbc.M112.373241. PMID: 22879589; PMCID: PMC3464571. ↥
Jacobsson SO, Fowler CJ (2001): Characterization of palmitoylethanolamide transport in mouse Neuro-2a neuroblastoma and rat RBL-2H3 basophilic leukaemia cells: comparison with anandamide. Br J Pharmacol. 2001 Apr;132(8):1743-54. doi: 10.1038/sj.bjp.0704029. PMID: 11309246; PMCID: PMC1572744. ↥
Fowler CJ, Jacobsson SO (2002): Cellular transport of anandamide, 2-arachidonoylglycerol and palmitoylethanolamide–targets for drug development? Prostaglandins Leukot Essent Fatty Acids. 2002 Feb-Mar;66(2-3):193-200. doi: 10.1054/plef.2001.0357. PMID: 12052035. REVIEW ↥
Tsuboi K, Hilligsmann C, Vandevoorde S, Lambert DM, Ueda N (2004): N-cyclohexanecarbonylpentadecylamine: a selective inhibitor of the acid amidase hydrolysing N-acylethanolamines, as a tool to distinguish acid amidase from fatty acid amide hydrolase. Biochem J. 2004 Apr 1;379(Pt 1):99-106. doi: 10.1042/BJ20031695. PMID: 14686878; PMCID: PMC1224050. ↥
Lichtman AH, Hawkins EG, Griffin G, Cravatt BF (2002): Pharmacological activity of fatty acid amides is regulated, but not mediated, by fatty acid amide hydrolase in vivo. J Pharmacol Exp Ther. 2002 Jul;302(1):73-9. doi: 10.1124/jpet.302.1.73. PMID: 12065702. ↥
Esposito E, Cuzzocrea S (2013): Palmitoylethanolamide is a new possible pharmacological treatment for the inflammation associated with trauma. Mini Rev Med Chem. 2013 Feb;13(2):237-55. PMID: 22697514. REVIEW ↥
Clayton P, Hill M, Bogoda N, Subah S, Venkatesh R (2021): Palmitoylethanolamide: A Natural Compound for Health Management. Int J Mol Sci. 2021 May 18;22(10):5305. doi: 10.3390/ijms22105305. PMID: 34069940; PMCID: PMC8157570. REVIEW ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥
Paterniti I, Impellizzeri D, Crupi R, Morabito R, Campolo M, Esposito E, Cuzzocrea S (2013): Molecular evidence for the involvement of PPAR-δ and PPAR-γ in anti-inflammatory and neuroprotective activities of palmitoylethanolamide after spinal cord trauma. J Neuroinflammation. 2013 Feb 1;10:20. doi: 10.1186/1742-2094-10-20. PMID: 23374874; PMCID: PMC3579707. ↥ ↥
Petrosino S, Schiano Moriello A, Verde R, Allarà M, Imperatore R, Ligresti A, Mahmoud AM, Peritore AF, Iannotti FA, Di Marzo V (2019): Palmitoylethanolamide counteracts substance P-induced mast cell activation in vitro by stimulating diacylglycerol lipase activity. J Neuroinflammation. 2019 Dec 26;16(1):274. doi: 10.1186/s12974-019-1671-5. PMID: 31878942; PMCID: PMC6933707. ↥
Guida F, Luongo L, Marmo F, Romano R, Iannotta M, Napolitano F, Belardo C, Marabese I, D’Aniello A, De Gregorio D, Rossi F, Piscitelli F, Lattanzi R, de Bartolomeis A, Usiello A, Di Marzo V, de Novellis V, Maione S (2015): Palmitoylethanolamide reduces pain-related behaviors and restores glutamatergic synapses homeostasis in the medial prefrontal cortex of neuropathic mice. Mol Brain. 2015 Aug 12;8:47. doi: 10.1186/s13041-015-0139-5. PMID: 26260027; PMCID: PMC4532244. ↥ ↥ ↥
Guida F, Boccella S, Iannotta M, De Gregorio D, Giordano C, Belardo C, Romano R, Palazzo E, Scafuro MA, Serra N, de Novellis V, Rossi F, Maione S, Luongo L (2017): Palmitoylethanolamide Reduces Neuropsychiatric Behaviors by Restoring Cortical Electrophysiological Activity in a Mouse Model of Mild Traumatic Brain Injury. Front Pharmacol. 2017 Mar 6;8:95. doi: 10.3389/fphar.2017.00095. PMID: 28321191; PMCID: PMC5337754. ↥ ↥
Pickering E, Steels EL, Steadman KJ, Rao A, Vitetta L (2022): A randomized controlled trial assessing the safety and efficacy of palmitoylethanolamide for treating diabetic-related peripheral neuropathic pain. Inflammopharmacology. 2022 Dec;30(6):2063-2077. doi: 10.1007/s10787-022-01033-8. PMID: 36057884; PMCID: PMC9700575. ↥
Cristiano C, Avagliano C, Cuozzo M, Liguori FM, Calignano A, Russo R (2022): The Beneficial Effects of Ultramicronized Palmitoylethanolamide in the Management of Neuropathic Pain and Associated Mood Disorders Induced by Paclitaxel in Mice. Biomolecules. 2022 Aug 20;12(8):1155. doi: 10.3390/biom12081155. PMID: 36009049; PMCID: PMC9406031. ↥ ↥ ↥
Andresen SR, Hansen RM, Biering-Sørensen F, Hagen EM, Rice ASC, Bach FW, Finnerup NB (2017): Reply. Pain. 2017 Apr;158(4):764-765. doi: 10.1097/j.pain.0000000000000822. PMID: 28301406. ↥ ↥
Cruccu G, Stefano GD, Marchettini P, Truini A (2019): Micronized Palmitoylethanolamide: A Post Hoc Analysis of a Controlled Study in Patients with Low Back Pain - Sciatica. CNS Neurol Disord Drug Targets. 2019;18(6):491-495. doi: 10.2174/1871527318666190703110036. PMID: 31269891; PMCID: PMC7132032. RCT-Review ↥
Cruccu G, Stefano GD, Marchettini P, Truini A (2019): Micronized Palmitoylethanolamide: A Post Hoc Analysis of a Controlled Study in Patients with Low Back Pain - Sciatica. CNS Neurol Disord Drug Targets. 2019;18(6):491-495. doi: 10.2174/1871527318666190703110036. PMID: 31269891; PMCID: PMC7132032. ↥
Steels E, Venkatesh R, Steels E, Vitetta G, Vitetta L (2019): A double-blind randomized placebo controlled study assessing safety, tolerability and efficacy of palmitoylethanolamide for symptoms of knee osteoarthritis. Inflammopharmacology. 2019 Jun;27(3):475-485. doi: 10.1007/s10787-019-00582-9. PMID: 30927159. RCT ↥
Briskey D, Skinner R, Smith C, Rao A (2024): Effectiveness of Palmitoylethanolamide (Levagen+) Compared to a Placebo for Reducing Pain, Duration, and Medication Use during Migraines in Otherwise Healthy Participants-A Double-Blind Randomised Controlled Study. Pharmaceuticals (Basel). 2024 Jan 23;17(2):145. doi: 10.3390/ph17020145. PMID: 38399360; PMCID: PMC10892859. RCT ↥
Andresen SR, Bing J, Hansen RM, Biering-Sørensen F, Johannesen IL, Hagen EM, Rice ASC, Nielsen JF, Bach FW, Finnerup NB (2016): Ultramicronized palmitoylethanolamide in spinal cord injury neuropathic pain: a randomized, double-blind, placebo-controlled trial. Pain. 2016 Sep;157(9):2097-2103. doi: 10.1097/j.pain.0000000000000623. PMID: 27227691. RCT ↥
Polati E, Martini A, Schweiger V (2017): Ultramicronized palmitoylethanolamide treatment in central neuropathic pain following longstanding spinal cord injury: try to extinguish the fire after everything was burned. Pain. 2017 Apr;158(4):763-764. doi: 10.1097/j.pain.0000000000000821. PMID: 28301405. ↥
von Bonin (2023): Review, Analyse und Kausalitätsprüfung von Cannabis-based Medicine und Palmitoylethanolamid als Analgetika bei Rheumaschmerzen. Dissertation. METASTUDY ↥
Morera C, Sabates S, Jaen A (2015): Sex differences in N-palmitoylethanolamide effectiveness in neuropathic pain associated with lumbosciatalgia. Pain Manag. 2015;5(2):81-7. doi: 10.2217/pmt.15.5. PMID: 25806902. ↥
Ghazizadeh-Hashemi M, Ghajar A, Shalbafan MR, Ghazizadeh-Hashemi F, Afarideh M, Malekpour F, Ghaleiha A, Ardebili ME, Akhondzadeh S (2018): Palmitoylethanolamide as adjunctive therapy in major depressive disorder: A double-blind, randomized and placebo-controlled trial. J Affect Disord. 2018 May;232:127-133. doi: 10.1016/j.jad.2018.02.057. PMID: 29486338. RCT ↥
Locci A, Pinna G (2019): Stimulation of Peroxisome Proliferator-Activated Receptor-α by N-Palmitoylethanolamine Engages Allopregnanolone Biosynthesis to Modulate Emotional Behavior. Biol Psychiatry. 2019 Jun 15;85(12):1036-1045. doi: 10.1016/j.biopsych.2019.02.006. PMID: 30955840. ↥
Locci A, Geoffroy P, Miesch M, Mensah-Nyagan AG, Pinna G (2017): Social Isolation in Early versus Late Adolescent Mice Is Associated with Persistent Behavioral Deficits That Can Be Improved by Neurosteroid-Based Treatment. Front Cell Neurosci. 2017 Aug 29;11:208. doi: 10.3389/fncel.2017.00208. PMID: 28900387; PMCID: PMC5581875. ↥
Pinna G (2010): In a mouse model relevant for post-traumatic stress disorder, selective brain steroidogenic stimulants (SBSS) improve behavioral deficits by normalizing allopregnanolone biosynthesis. Behav Pharmacol. 2010 Sep;21(5-6):438-50. doi: 10.1097/FBP.0b013e32833d8ba0. PMID: 20716970; PMCID: PMC2942072. REVIEW ↥
Matrisciano F, Pinna G (2021): PPAR-α Hypermethylation in the Hippocampus of Mice Exposed to Social Isolation Stress Is Associated with Enhanced Neuroinflammation and Aggressive Behavior. Int J Mol Sci. 2021 Oct 1;22(19):10678. doi: 10.3390/ijms221910678. PMID: 34639019; PMCID: PMC8509148. ↥
Kim N, Parolin B, Renshaw D, Deb SK, Zariwala MG (2024): Formulated Palmitoylethanolamide Supplementation Improves Parameters of Cognitive Function and BDNF Levels in Young, Healthy Adults: A Randomised Cross-Over Trial. Nutrients. 2024 Feb 8;16(4):489. doi: 10.3390/nu16040489. PMID: 38398813; PMCID: PMC10891801. ↥
Mattace Raso G, Simeoli R, Russo R, Santoro A, Pirozzi C, d’Emmanuele di Villa Bianca R, Mitidieri E, Paciello O, Pagano TB, Orefice NS, Meli R, Calignano A (2013): N-Palmitoylethanolamide protects the kidney from hypertensive injury in spontaneously hypertensive rats via inhibition of oxidative stress. Pharmacol Res. 2013 Oct;76:67-76. doi: 10.1016/j.phrs.2013.07.007. PMID: 23917217. ↥
Petrosino S, Schiano Moriello A, Cerrato S, Fusco M, Puigdemont A, De Petrocellis L, Di Marzo V (2016): The anti-inflammatory mediator palmitoylethanolamide enhances the levels of 2-arachidonoyl-glycerol and potentiates its actions at TRPV1 cation channels. Br J Pharmacol. 2016 Apr;173(7):1154-62. doi: 10.1111/bph.13084. PMID: 25598150; PMCID: PMC5338153. ↥ ↥ ↥ ↥
Borrelli F, Romano B, Petrosino S, Pagano E, Capasso R, Coppola D, Battista G, Orlando P, Di Marzo V, Izzo AA (2015): Palmitoylethanolamide, a naturally occurring lipid, is an orally effective intestinal anti-inflammatory agent. Br J Pharmacol. 2015 Jan;172(1):142-58. doi: 10.1111/bph.12907. PMID: 25205418; PMCID: PMC4280974. ↥
Lerner R, Pascual Cuadrado D, Post JM, Lutz B, Bindila L (2019): Broad Lipidomic and Transcriptional Changes of Prophylactic PEA Administration in Adult Mice. Front Neurosci. 2019 Jun 11;13:527. doi: 10.3389/fnins.2019.00527. PMID: 31244590; PMCID: PMC6580993. ↥
Gabrielsson L, Mattsson S, Fowler CJ (2016): Palmitoylethanolamide for the treatment of pain: pharmacokinetics, safety and efficacy. Br J Clin Pharmacol. 2016 Oct;82(4):932-42. doi: 10.1111/bcp.13020. PMID: 27220803; PMCID: PMC5094513. REVIEW ↥
Nestmann ER (2016): Safety of micronized palmitoylethanolamide (microPEA): lack of toxicity and genotoxic potential. Food Sci Nutr. 2016 Jun 15;5(2):292-309. doi: 10.1002/fsn3.392. PMID: 28265364; PMCID: PMC5332261. ↥
Vacondio F, Bassi M, Silva C, Castelli R, Carmi C, Scalvini L, Lodola A, Vivo V, Flammini L, Barocelli E, Mor M, Rivara S (2015): Amino Acid Derivatives as Palmitoylethanolamide Prodrugs: Synthesis, In Vitro Metabolism and In Vivo Plasma Profile in Rats. PLoS One. 2015 Jun 8;10(6):e0128699. doi: 10.1371/journal.pone.0128699. PMID: 26053855; PMCID: PMC4460047. ↥
Beggiato S, Tomasini MC, Ferraro L (2019): Palmitoylethanolamide (PEA) as a Potential Therapeutic Agent in Alzheimer’s Disease. Front Pharmacol. 2019 Jul 24;10:821. doi: 10.3389/fphar.2019.00821. PMID: 31396087; PMCID: PMC6667638. REVIEW ↥
Bisogno T, Martire A, Petrosino S, Popoli P, Di Marzo V (2008): Symptom-related changes of endocannabinoid and palmitoylethanolamide levels in brain areas of R6/2 mice, a transgenic model of Huntington’s disease. Neurochem Int. 2008 Jan;52(1-2):307-13. doi: 10.1016/j.neuint.2007.06.031. PMID: 17664017. ↥
Banister SD, Krishna Kumar K, Kumar V, Kobilka BK, Malhotra SV (2019): Selective modulation of the cannabinoid type 1 (CB1) receptor as an emerging platform for the treatment of neuropathic pain. Medchemcomm. 2019 Mar 18;10(5):647-659. doi: 10.1039/c8md00595h. PMID: 31191856; PMCID: PMC6533890. REVIEW ↥ ↥ ↥ ↥
Turner CE, Elsohly MA, Boeren EG (1980): Constituents of Cannabis sativa L. XVII. A review of the natural constituents. J Nat Prod. 1980 Mar-Apr;43(2):169-234. doi: 10.1021/np50008a001. PMID: 6991645. REVIEW ↥ ↥ ↥ ↥ ↥ ↥
Gülck T, Møller BL (2020): Phytocannabinoids: Origins and Biosynthesis. Trends Plant Sci. 2020 Oct;25(10):985-1004. doi: 10.1016/j.tplants.2020.05.005. PMID: 32646718. REVIEW ↥
Qian Y, Markowitz JS (2022): Prediction of Carboxylesterase 1-mediated In Vivo Drug Interaction between Methylphenidate and Cannabinoids using Static and Physiologically Based Pharmacokinetic Models. Drug Metab Dispos. 2022 Jul;50(7):968-979. doi: 10.1124/dmd.121.000823. PMID: 35512806; PMCID: PMC11022897. ↥ ↥
Kumar A, Kindig K, Rao S, Zaki AM, Basak S, Sansom MSP, Biggin PC, Chakrapani S (2022): Structural basis for cannabinoid-induced potentiation of alpha1-glycine receptors in lipid nanodiscs. Nat Commun. 2022 Aug 18;13(1):4862. doi: 10.1038/s41467-022-32594-5. PMID: 35982060; PMCID: PMC9388682. ↥
Di Marzo V (2020): The endocannabinoidome as a substrate for noneuphoric phytocannabinoid action and gut microbiome dysfunction in neuropsychiatric disorders . Dialogues Clin Neurosci. 2020 Sep;22(3):259-269. doi: 10.31887/DCNS.2020.22.3/vdimarzo. PMID: 33162769; PMCID: PMC7605024. REVIEW ↥ ↥ ↥ ↥
Radwan MM, Chandra S, Gul S, ElSohly MA (2021): Cannabinoids, Phenolics, Terpenes and Alkaloids of Cannabis. Molecules. 2021 May 8;26(9):2774. doi: 10.3390/molecules26092774. PMID: 34066753; PMCID: PMC8125862. REVIEW ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥
Leweke FM, Piomelli D, Pahlisch F, Muhl D, Gerth CW, Hoyer C, Klosterkötter J, Hellmich M, Koethe D (2012): Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry. 2012 Mar 20;2(3):e94. doi: 10.1038/tp.2012.15. PMID: 22832859; PMCID: PMC3316151. ↥ ↥
Mizrahi R (2016): Social Stress and Psychosis Risk: Common Neurochemical Substrates? Neuropsychopharmacology. 2016 Feb;41(3):666-74. doi: 10.1038/npp.2015.274. PMID: 26346639; PMCID: PMC4707841. REVIEW ↥
Lucindo MSS, Albuquerque ALS, Pereira KA, Salgado KDCB, Oliveira LAM, Engel DF, Nogueira KOPC (2025): Chronic cannabidiol administration modulates depressive and cognitive alterations induced by social isolation in male mice. Behav Brain Res. 2025 Mar 5;480:115408. doi: 10.1016/j.bbr.2024.115408. PMID: 39725273. ↥ ↥ ↥
Chesney E, Oliver D, McGuire P (2022): Cannabidiol (CBD) as a novel treatment in the early phases of psychosis. Psychopharmacology (Berl). 2022 May;239(5):1179-1190. doi: 10.1007/s00213-021-05905-9. PMID: 34255100; PMCID: PMC9110455. REVIEW ↥
Remiszewski P, Jarocka-Karpowicz I, Biernacki M, Jastrząb A, Schlicker E, Toczek M, Harasim-Symbor E, Pędzińska-Betiuk A, Malinowska B (2020): Chronic Cannabidiol Administration Fails to Diminish Blood Pressure in Rats with Primary and Secondary Hypertension Despite Its Effects on Cardiac and Plasma Endocannabinoid System, Oxidative Stress and Lipid Metabolism. Int J Mol Sci. 2020 Feb 14;21(4):1295. doi: 10.3390/ijms21041295. PMID: 32075117; PMCID: PMC7072941. ↥
Morgan CJ, Schafer G, Freeman TP, Curran HV (2010): Impact of cannabidiol on the acute memory and psychotomimetic effects of smoked cannabis: naturalistic study: naturalistic study [corrected]. Br J Psychiatry. 2010 Oct;197(4):285-90. doi: 10.1192/bjp.bp.110.077503. Erratum in: Br J Psychiatry. 2010 Nov;197:416. PMID: 20884951. ↥
Turner SE, Williams CM, Iversen L, Whalley BJ (2017): Molecular Pharmacology of Phytocannabinoids. Prog Chem Org Nat Prod. 2017;103:61-101. doi: 10.1007/978-3-319-45541-9_3. PMID: 28120231. REVIEW ↥
Galaj E, Xi ZX (2020): Possible Receptor Mechanisms Underlying Cannabidiol Effects on Addictive-like Behaviors in Experimental Animals. Int J Mol Sci. 2020 Dec 24;22(1):134. doi: 10.3390/ijms22010134. PMID: 33374481; PMCID: PMC7795330. REVIEW ↥ ↥
Tham M, Yilmaz O, Alaverdashvili M, Kelly MEM, Denovan-Wright EM, Laprairie RB (2019): Allosteric and orthosteric pharmacology of cannabidiol and cannabidiol-dimethylheptyl at the type 1 and type 2 cannabinoid receptors. Br J Pharmacol. 2019 May;176(10):1455-1469. doi: 10.1111/bph.14440. PMID: 29981240; PMCID: PMC6487556. ↥
Navarro G, Reyes-Resina I, Rivas-Santisteban R, Sánchez de Medina V, Morales P, Casano S, Ferreiro-Vera C, Lillo A, Aguinaga D, Jagerovic N, Nadal X, Franco R (2018): Cannabidiol skews biased agonism at cannabinoid CB1 and CB2 receptors with smaller effect in CB1-CB2 heteroreceptor complexes. Biochem Pharmacol. 2018 Nov;157:148-158. doi: 10.1016/j.bcp.2018.08.046. PMID: 30194918. ↥
Puighermanal E, Luna-Sánchez M, Gella A, van der Walt G, Urpi A, Royo M, Tena-Morraja P, Appiah I, de Donato MH, Menardy F, Bianchi P, Esteve-Codina A, Rodríguez-Pascau L, Vergara C, Gómez-Pallarès M, Marsicano G, Bellocchio L, Martinell M, Sanz E, Jurado S, Soriano FX, Pizcueta P, Quintana A (2024): Cannabidiol ameliorates mitochondrial disease via PPARγ activation in preclinical models. Nat Commun. 2024 Sep 4;15(1):7730. doi: 10.1038/s41467-024-51884-8. PMID: 39231983; PMCID: PMC11375224. ↥
De Petrocellis L, Ligresti A, Moriello AS, Allarà M, Bisogno T, Petrosino S, Stott CG, Di Marzo V (2011): Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol. 2011 Aug;163(7):1479-94. doi: 10.1111/j.1476-5381.2010.01166.x. PMID: 21175579; PMCID: PMC3165957. ↥ ↥
Xiong W, Cui T, Cheng K, Yang F, Chen SR, Willenbring D, Guan Y, Pan HL, Ren K, Xu Y, Zhang L (2012): Cannabinoids suppress inflammatory and neuropathic pain by targeting α3 glycine receptors. J Exp Med. 2012 Jun 4;209(6):1121-34. doi: 10.1084/jem.20120242. PMID: 22585736; PMCID: PMC3371734. ↥
Xiong W, Cheng K, Cui T, Godlewski G, Rice KC, Xu Y, Zhang L (2011): Cannabinoid potentiation of glycine receptors contributes to cannabis-induced analgesia. Nat Chem Biol. 2011 May;7(5):296-303. doi: 10.1038/nchembio.552. PMID: 21460829; PMCID: PMC3388539. ↥
González-Mariscal I, Carmona-Hidalgo B, Winkler M, Unciti-Broceta JD, Escamilla A, Gómez-Cañas M, Fernández-Ruiz J, Fiebich BL, Romero-Zerbo SY, Bermúdez-Silva FJ, Collado JA, Muñoz E (2021): (+)-trans-Cannabidiol-2-hydroxy pentyl is a dual CB1R antagonist/CB2R agonist that prevents diabetic nephropathy in mice. Pharmacol Res. 2021 Jul;169:105492. doi: 10.1016/j.phrs.2021.105492. PMID: 34019978. ↥
D’Aniello E, Fellous T, Iannotti FA, Gentile A, Allarà M, Balestrieri F, Gray R, Amodeo P, Vitale RM, Di Marzo V (2019): Identification and characterization of phytocannabinoids as novel dual PPARα/γ agonists by a computational and in vitro experimental approach. Biochim Biophys Acta Gen Subj. 2019 Mar;1863(3):586-597. doi: 10.1016/j.bbagen.2019.01.002. PMID: 30611848. ↥ ↥ ↥
Udoh M, Santiago M, Devenish S, McGregor IS, Connor M (2019): Cannabichromene is a cannabinoid CB2 receptor agonist. Br J Pharmacol. 2019 Dec;176(23):4537-4547. doi: 10.1111/bph.14815. PMID: 31368508; PMCID: PMC6932936. ↥
Vernail VL, Bingaman SS, Silberman Y, Raup-Konsavage WM, Vrana KE, Arnold AC (2022): Acute Cannabigerol Administration Lowers Blood Pressure in Mice. Front Physiol. 2022 May 9;13:871962. doi: 10.3389/fphys.2022.871962. PMID: 35615681; PMCID: PMC9124753. ↥
Zulfiqar F, Ross SA, Slade D, Ahmed SA, Radwan MM, Ali Z, Khan IA, ElSohly MA (2012): Cannabisol, a novel Δ9-THC dimer possessing a unique methylene bridge, isolated from Cannabis sativa. Tetrahedron Lett. 2012 Jul 11;53(28):3560-3562. doi: 10.1016/j.tetlet.2012.04.139. PMID: 27695140; PMCID: PMC5045039. ↥
Ligresti A, Villano R, Allarà M, Ujváry I, Di Marzo V (2012): Kavalactones and the endocannabinoid system: the plant-derived yangonin is a novel CB₁ receptor ligand. Pharmacol Res. 2012 Aug;66(2):163-9. doi: 10.1016/j.phrs.2012.04.003. PMID: 22525682. ↥
Korte G, Dreiseitel A, Schreier P, Oehme A, Locher S, Geiger S, Heilmann J, Sand PG (2010): Tea catechins’ affinity for human cannabinoid receptors. Phytomedicine. 2010 Jan;17(1):19-22. doi: 10.1016/j.phymed.2009.10.001. PMID: 19897346. ↥
Raduner S, Majewska A, Chen JZ, Xie XQ, Hamon J, Faller B, Altmann KH, Gertsch J (2006): Alkylamides from Echinacea are a new class of cannabinomimetics. Cannabinoid type 2 receptor-dependent and -independent immunomodulatory effects. J Biol Chem. 2006 May 19;281(20):14192-206. doi: 10.1074/jbc.M601074200. PMID: 16547349. ↥
Gertsch J, Leonti M, Raduner S, Racz I, Chen JZ, Xie XQ, Altmann KH, Karsak M, Zimmer A (2008): Beta-caryophyllene is a dietary cannabinoid. Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):9099-104. doi: 10.1073/pnas.0803601105. PMID: 18574142; PMCID: PMC2449371. ↥
Geresu B, Onaivi E, Engidawork E (2016): Behavioral evidence for the interaction between cannabinoids and Catha edulis F. (Khat) in mice. Brain Res. 2016 Oct 1;1648(Pt A):333-338. doi: 10.1016/j.brainres.2016.08.006. PMID: 27502029. ↥
Geresu B, Canseco-Alba A, Sanabria B, Lin Z, Liu QR, Onaivi ES, Engidawork E (2019): Involvement of CB2 Receptors in the Neurobehavioral Effects of Catha Edulis (Vahl) Endl. (Khat) in Mice. Molecules. 2019 Aug 30;24(17):3164. doi: 10.3390/molecules24173164. PMID: 31480324; PMCID: PMC6749201. ↥
Roque-Bravo R, Silva RS, Malheiro RF, Carmo H, Carvalho F, da Silva DD, Silva JP (2023): Synthetic Cannabinoids: A Pharmacological and Toxicological Overview. Annu Rev Pharmacol Toxicol. 2023 Jan 20;63:187-209. doi: 10.1146/annurev-pharmtox-031122-113758. PMID: 35914767. REVIEW ↥
Brunt TM, Bossong MG (2022): The neuropharmacology of cannabinoid receptor ligands in central signaling pathways. Eur J Neurosci. 2022 Feb;55(4):909-921. doi: 10.1111/ejn.14982. PMID: 32974975; PMCID: PMC9291836. REVIEW ↥ ↥ ↥ ↥ ↥ ↥
Almeida AS, Pinho PG, Remião F, Fernandes C (2025): Uncovering the Metabolic Footprint of New Psychoactive Substances by Metabolomics: A Systematic Review. Molecules. 2025 Jan 13;30(2):290. doi: 10.3390/molecules30020290. PMID: 39860158; PMCID: PMC11767662. REVIEW ↥ ↥
Fernández-Ruiz J, Hernández M, Ramos JA (2010): Cannabinoid-dopamine interaction in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther. 2010 Jun;16(3):e72-91. doi: 10.1111/j.1755-5949.2010.00144.x. PMID: 20406253; PMCID: PMC6493786. REVIEW ↥
Morningstar M, Kolodziej A, Ferreira S, Blumen T, Brake R, Cohen Y (2023): Novel cannabinoid receptor 1 inverse agonist CRB-913 enhances efficacy of tirzepatide, semaglutide, and liraglutidein the diet-induced obesity mouse model. Obesity (Silver Spring). 2023 Nov;31(11):2676-2688. doi: 10.1002/oby.23902. PMID: 37840407. ↥
Manzoni OJ, Bockaert J (2001): Cannabinoids inhibit GABAergic synaptic transmission in mice nucleus accumbens. Eur J Pharmacol. 2001 Jan 26;412(2):R3-5. doi: 10.1016/s0014-2999(01)00723-3. PMID: 11165232. ↥ ↥
Sagheddu C, Torres LH, Marcourakis T, Pistis M (2020): Endocannabinoid-Like Lipid Neuromodulators in the Regulation of Dopamine Signaling: Relevance for Drug Addiction. Front Synaptic Neurosci. 2020 Dec 23;12:588660. doi: 10.3389/fnsyn.2020.588660. PMID: 33424577; PMCID: PMC7786397. REVIEW ↥