Header Image
Cannabinoids regulate dopamine

Sitemap

Cannabinoids regulate dopamine

So far, the evidence is still too weak to recommend cannabinoid-based interventions for CNS disorders with dopaminergic dysregulation. Research into the effects of cannabinoids in this area is still in its infancy1
Nevertheless, it is evident that endocannabinoids are very closely linked to the dopamine system and exert a significant influence on dopamine.

1. The dopamine endocannabinoid system

Cannabinoids and dopamine are not only very closely linked23 , but also regulate each other, at least in the striatum4
A number of behaviors and disorders that were previously considered purely dopaminergic in origin can now be better explained as the result of interactions between the endocannabinoid and dopamine systems5, e.g:

  • motor control / motor disorders (Parkinson’s, dyskinesia, dystonia)67
  • Reward8
  • Addiction8
    • Endocannabinoids interact with the opioid system and the dopamine system.9
  • goal-oriented behavior, motivation10

The cannabinoid system interacts with dopaminergic neurons that have cell bodies in the reticular formation of the midbrain (e.g. in substantia nigra pars compacta (A9) and VTA (A10)) and axons in the forebrain (e.g. in the caudate/putamen and nucleus accumbens/PFC complex). This influences activities such as movement and various cognitive functions.1

The interaction of endocannabinoids and dopamine to regulate important brain functions such as motor control, reward and psychosis occurs particularly in the nucleus accumbens, VTA, substantia nigra, striatum and PFC. Motor function is controlled by the basal ganglia with high levels of 2-AG and AEA together with other neurotransmitters such as GABA, glutamate, dopamine and acetylcholine.11

CB1R and dopamine receptors form postsynaptic heteromers.1

1.1. Cannabinoids and dopamine regulate motivation - mesocortical

Mesocorticolimbic dopaminergic neurons control motivation and reward (alongside cognitive functions, the central stress response, reinforcement-induced pleasure and addiction)9

Cannabinoids affect the mesocortical dopamine system12 and, like most habit-forming drugs, act by altering mesocorticolimbic dopamine transmission.113

Many areas of the brain’s reward circuit are rich in cannabinoid components, especially CB1R.1
Cannabinoid agonists increase mesolimbic dopaminergic activity by affecting DA receptor density, dopamine release and dopamine metabolism.1214
Cannabinoids increased the firing rate of mesolimbic dopaminergic neurons in the VTA (A10).115
Δ9-THC13 as well as other CB1R agonists16 increase extracellular dopamine levels and dopaminergic neurotransmission in the nucleus accumbens shell.
Presynaptic CB1Rs also appear to inhibit dopamine release from dopaminergic neurons.17

Endocannabinoids influence various aspects of food reward, e.g. appetite motivation.18 The CB1R agonists THC, anandamide and 2-AG promote appetite and cravings.19 Cannabinoid agonists increase euphoria, reward and emotionality and decrease anxiety, motivation and arousal. This is thought to occur primarily through glutamatergic and/or GABAergic innervations to the nucleus accumbens/PFC and VTA, where they cause dopaminergic changes.1
More on the regulation of appetite and food intake by endocannabinoids in the article Cannabinoids also regulate appetite and food intake via dopamine

A yardstick for measuring reward modulation, and more specifically the relationship between response effort and the value of a particular reward, is the progressive ratio at which the requirements for obtaining a single reward are exponentially increased within a single session until the subject stops responding. The “breakpoint” is the ratio at which the subject stops responding. The breakpoint thus measures the work that an organism is prepared to do for a goal.202122
Cannabinoid agonists increase the breakpoint, i.e. the amount of work the test subjects are willing to do for a single reward.23
A 2-AG degradation inhibitor, but not an AEA degradation inhibitor, increased the breakpoint.24
Inhibition of 2-AG degradation in the VTA promoted reward seeking and phasic DA release.24

CB1Rs are also found on a number of other structures that regulate motivation and reward:9

  • Hippocampus
  • basolateral amygdala
  • Hypothalamus

1.2. Cannabinoids and dopamine regulate choice impulsivity (delay discounting) via the nucleus accumbens

The devaluation of more distant rewards is a natural reaction. The more distant a reward is, the higher the level of devaluation.
Stress leads to a preference for short-term rewards.25

Phasic dopamine firing correlates positively with the magnitude of the reward and decreases hyperbolically with the delay of the reward. Dopamine release in the nucleus accumbens decreases correlatively with the length of an announced delay. Phasic DA release during reward delivery is even higher for small to medium delays for the larger reward and decreases with increasing delay to the level of the small immediate reward 23 2627

Cannabinoids influence elective impulsivity only indirectly by modulating dopamine.23
During intertemporal decision-making tasks, dopamine acutely increasing drugs increase self-control and lead to more frequent choice of the larger delayed reward instead of the immediate smaller reward, while dopamine acutely decreasing drugs promote impulsive choice of the smaller but immediate reward.
The CB1R agonist Δ9-THC increases self-control; previously administered CB1R antagonists block this.
CB1R antagonists reduce the effect of DA agonists.28
CB1R antagonists alone do not influence self-control.
Chronic dopamine elevation through drugs reduces self-control.

Chronic drug exposure leads to plastic changes in the mesolimbic circuitry and other brain areas and neurotransmitters. Endocannabinoids are involved23

  • in the modulation of synaptic plasticity in the VTA
  • the increase in phasic DA release following dopaminergic drug intake
  • in the development and development of sensitization
  • in the conditioned drug search
  • relapse and resumption of drug use due to a tip-off

Subjects who were sensitized to the effects of cocaine showed choice impulsivity in intertemporal decision-making tasks.23
While a higher dopamine release before sensitization encodes a larger reward as long as the delay is less than 10 seconds, the phasic release after sensitization is relatively higher for the small immediate reward regardless of the delay26
A CB1R antagonist prior to cocaine exposure prevented26

  • the electoral impulsivity
  • the maladaptive patterns of phasic dopamine release
    A CBR1 antagonist after cocaine sensitization26
  • corrected the changes in self-control

1.3. Cannabinoids and dopamine regulate reward and addiction - mesolimbic

Mesocorticolimbic dopamine influences reward and addiction in humans.1
Opioids, cannabinoids, psychostimulants, cocaine, alcohol and nicotine acutely increase the release of dopamine in various regions of the brain,2930 31 including the mesolimbic dopamine system. CB1Rs are required for this increase in phasic dopamine release.32 The CB1R antagonist rimonabant prevents the increased phasic dopamine release caused by the aforementioned drugs.333435

The mesolimbic system is primarily controlled by dopamine, which flows from the VTA (midbrain = meso) to the nucleus accumbens (part of the basal ganglia) and its downstream nuclei of the limbic system. In addition to these, the mPFC, amygdala, substantia nigra, globus pallidus and hippocampus are also involved in the motivating and reinforcing effect of cannabinoids 36 3637
Signals from the mPFC and the basolateral amygdala to extracellular neurons in the nucleus accumbens shell are inhibited by cannabinoid agonists and completely suppressed by rimonabant (CB1R antagonist/inverse agonist).37
CB1R is found in the VTA, nucleus accumbens, striatum and pyriform cortex38 as well as in excitatory projections from subcortical structures to the nucleus bed of the stria terminalis, which in turn projects into the VTA.39

Reward dependence appears to correlate with low levels of AEA, while 2-AG showed no correlation.40 Reward dependence, measured with the “Reward Dependence” scale of the Tridimensional Personality Questionnaire (TPQ), is the individual’s dependence on signals of mainly social reward, especially verbal signals of social recognition, social support and current mood.

Dopamine encodes the deviation between the expected and received reward (reward prediction error).
Without mobilization of 2-AG from VTA dopamine neurons, the generation of dopamine-based predictive associations required for the control and stimulation of reward-seeking behavior is not possible.41
Most midbrain dopamine neurons are activated when the reward is higher than predicted (positive prediction error), remain unchanged when the expectation is realized and show dampened activity when the reward is lower than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and encodes the formal economic benefit. Addictive drugs generate, hijack and amplify the dopamine signal for rewards and induce an exaggerated, uncontrolled dopamine effect on neuronal plasticity.
In striatum, amygdala and PFC, only subpopulations of neurons show reward prediction miscoding.42

1.3.1. 2-AG increases reward-seeking behavior

Endocannabinoids, especially 2-AG, influence the associated behavior via mesolimbic dopamine release:43

  • Reward search
    • 2-AG is necessary to observe the dopamine release triggered by a stimulus, which represents the value of a rewarding outcome
  • Interval control
    • 2-AG modulates unique patterns of dopamine release and behavior under conditions of periodic reinforcement
  • active avoidance behavior
    • the dopamine concentration caused by a warning signal represents the value of an avoidance result. Disruption of 2-AG signaling reduces the DA level of the avoidance value signal and thus active avoidance

2-AG reinforced the reward-seeking behavior.2433
2-AG can enhance the effect of stimulus-induced dopamine release33, e.g. when 2-AG is increased by a MAGL inhibitor such as JZL184. The stimulus-induced dopamine transients then increase in magnitude and occur with a shorter latency.

1.3.2. AEA reduces reward-seeking behavior

In contrast, an increase in AEA reduces reward-seeking behavior and dopamine signaling during reward seeking4445 , e.g., dose-dependently when AEA is increased by VDM114647 , a selective AEA reuptake inhibitor48 and AEA and 2-AG degradation inhibitors49.

It is possible that AEA only acts as a partial CB1R agonist without 2-AG and as a competitive antagonist in the presence of 2-AG.33 This would be consistent with the fact that AEA in particular is involved in mediating synaptic plasticity in several brain regions, which is suppressed by 2-AG.5051

1.3.3. CB1R agonists increase, CB1R antagonists decrease reward-seeking behavior

The mesocorticolimbic pathway and brain regions that influence decision-making, withdrawal symptoms and relapse express CB1R52 and CB2R53.

CB1R agonists enhance conditioned place preference and increase preference for ethanol- and nicotine-associated stimuli1
The CB1R antagonist rimonabant

  • reduced reinforcement perception for various addictive drugs, CB1R blockades (genetic or pharmacological) prevent the dopamine surge otherwise triggered by Δ9-THC, nicotine, heroin, morphine or ethanol1
  • reduced dopamine levels and reward-seeking behavior significantly13
  • was helpful in the treatment of alcohol addiction and smoking cessation.154

CB1R-KO mice show12 reduced voluntary alcohol consumption and abolition of alcohol-induced dopamine increase in the nucleus accumbens55, reduced morphine self-administration56, reduced basal and abolition of cocaine-induced hypermotor activity57 and the absence of rewarding effects of nicotine in the conditioned place preference test58, but no similar responses to reinforcement by cocaine or nicotine in the self-administration paradigm56.

1.3.4. CB2R agonists reduce, CB2R antagonists increase reward-seeking behavior

CB2Rs are also involved in addiction. β-Caryophyllene (BCP), presumably a CB2R full agonist and possibly a PPAR ligand, prevented and even partially reversed the behavioral changes induced by cocaine, nicotine, alcohol or methamphetamine, such as self-administration, conditioned place preference or self-stimulation.59
Pretreatment with the selective CB2R agonist JWH133 attenuated the hyperactivity induced by cocaine and nicotine in WT mice.60
Increased alcohol preference/increased alcohol consumption reduced CB2R expression in the ventral midbrain.61
The CB2R agonist JWH015 increased alcohol preference in mice exposed to chronic mild stress, while the CB2R inverse agonist AM630 prevented the development of alcohol preference.61 CB2R-KO mice (mice without CB2R) show increased alcohol consumption, increased motivation and changes in relapse behavior62

TRPV1 are essential for the development of place preference and self-administration of methamphetamine.63 TRPV1s appear to be involved in pain stimulus-induced dopamine release in the nucleus accumbens.64
CBD (TRPV1 and PPAR agonist) over 10 days reduced cannabis withdrawal symptoms in a case study.65
CBD can help prevent addiction relapses.66

FAAH inhibitors reduced nicotine-induced activation of dopaminergic neurons, which argues against the idea that endocannabinoids enhance the dopaminergic effect of nicotine via the CB1R. Apparently, FAAH inhibitors in the present case (also) enhance the effect of certain N-acylethanolamines (e.g. OEA and PEA), which do not bind to CB1R but to PPAR-α. Administration of OEA and PEA showed the same effect.67

1.4. Cannabinoids and dopamine regulate motor function - via the basal ganglia

Endocannabinoids regulate dopaminergic neurotransmission, in particular via:5

  • the effector sites of the DA neurons in the basal ganglia
    • CB1R are highly expressed on striatal projection neurons, as well as in some fast-spiking parvalbumin-containing interneurons68697071
    • CB1R activation in the ventral hippocampus led to significantly increased VTA dopamine neuron firing, which correlated with increased morphine reward sensation39

In addition to dopamine, GABA, glutamate and acetylcholine, the basal ganglia, which control motor function, also contain plenty of cannabinoid components such as cannabinoids:1

  • AEA in high concentration
  • 2-AG in high concentration
  • CB1R, which is significantly involved in movement control in a healthy state

Cannabinoid medications improve movement disorders, e.g:72

  • Parkinson’s disease:
    • Bradykinesia: CB1R antagonists
    • Tremor: CB1R agonists
    • delay the development of Parkinson’s disease through neuroprotective properties
      • CB1R agonists reduce excitotoxicity
      • CB2R agonists limit the toxicity of reactive microglia
      • antioxidant cannabinoids reduce oxidative damage
  • Huntington:
    • choreic movements: CB1R agonists / TRPV1 agonists

Cannabinoids increase the firing of dopamine neurons and the synaptic release of dopamine in the striatum473741675

  • not directly through activation of striatal CB1R, as the effect did not occur in vitro on striatal tissue or in CB1R KO mice76
  • rather indirect regulation of the firing of striatal dopamine neurons via activation of dopaminergic neurons at the somatodendritic level in the midbrain (substantia nigra / VTA)777879
  • the midbrain dopamine neurons are also not activated directly, but indirectly via complex pathways80 involving
    • terminal fields of the direct and indirect mesoaccumbens projections in the midbrain4
    • of the mesocortical projection, e.g. via TRPV181
    • local GABA interneurons82

Cannabinoids regulate dopaminergic firing via inhibitory CB1R in GABA and glutamatergic terminals, leading to a functional balance between excitatory and inhibitory inputs. The balance is characterized by a predominance of CB1R-GABAergic-mediated disinhibition of DA neuron activation.83
In addition to the excitatory CB1R-GABA pathway, cannabinoidergic TRPV1 agonists can increase dopamine firing rates, which are likely to be located at glutamatergic terminals (Marinelli et al., 2003, 2007). 81
While CB1R generally tends to massively increase dopamine release, 2-AG from the VTA regulates the homeostatic control of cortical/subcortical dopamine balance and thus the maintenance of appropriate neuroadaptations and goal-directed behaviors. CB1R activation by 2AG inhibits the increase in firing and bursting activity of dopamine neurons induced by stimulation of the PFC. 2-AG synthesis requires activation of metabotropic glutamate receptors.8443

Endocannabinoids locally control the release of dopamine in the nucleus accumbens.85868733
Optogenetic stimulation of cholinergic interneurons triggered dopamine release in the nucleus accumbens.
A CB1R agonist inhibited this dopamine release.88
Stimulation of cholinergic interneurons facilitated glutamatergic transmission via presynaptic α7-expressing nAChRs located on PFC terminals. The increased glutamate controls DA release via at least several mechanisms:

  • directly via glutamate release at AMPA receptors on the DA terminals
  • indirectly via the excitation of cholinergic interneurons and the activation of nAChRs on DA terminals.
  • In the nucleus accumbens, endocannabinoid synthesis triggered by cholinergic interneurons also occurs through the facilitation of glutamate release on NAc-MSNs, which drives eCB mobilization to CB1 receptor-expressing PFC terminals.

Endocannabinoids regulate motor activity in a dose-dependent manner:18990

  • Low doses of cannabinoids stimulated motor activity
  • High doses of cannabinoids reduced motor activity to the point of severe catalepsy (body rigidity)
  • The CB1R antagonist rimonabant blocked these motor effects

Endovanilloid and dopamine signaling systems appear to work together to control movement, among other things. 1
Eicosanoid cannabinoids such as anandamide, AM404 or N-arachidonoyl-dopamine also bind to the vanilloid TRPV-1 receptor.6
TRPV1R1

  • can be found
    • on sensory neurons
    • on nigrostriatal dopaminergic neurons in the basal ganglia91
      • which could mean a direct dopaminergic effect of endocannabinoids92
  • act as molecular integrators of nociceptive stimuli93

AEA leads to hypokinesia in rats, which correlates with reduced activity of nigrostriatal dopaminergic neurons (de Lago et al., 2004). This may be due to an effect of AEA at TRPV1 rather than CB1R. AEA caused:9192

  • reduced urge to move
  • reduced stereotypes
  • reduced exploration in the field test
  • increased inactivity time

The TRPV1 antagonist capsazepine abolished the AEA effect
AEA reduced the dopamine metabolite 3,4-dihydroxyphenylacetic acid in the putamen caudatus. Capsazepine reversed this, suggesting that TRPV1 agonists reduce dopamine turnover in the basal ganglia.
AEA also reduced stimulus-induced dopamine release from nigrostriatal terminals.91

1.5. Cannabinoids and dopamine influence working memory, time processing and behavioral adaptation - via PFC

Moderate amounts of CB1R are found in the PFC.
Acute administration of CB1R agonists increases presynaptic dopamine release94 and extracellular dopamine in the cortex.95
Acute cannabinoid agonist administration increases the activity of dopaminergic neurons in the VTA that project to the PFC.12
The PFC controls many cognitive functions in a dopaminergic manner, including

  • Working memory
  • temporal organization of behavior
  • Adaptation of behavioral strategies

Repeated cannabinoid agonist administration reduced dopamine turnover in the PFC, but not in the nucleus accumbens and striatum, which persisted 2 weeks after discontinuation.129697

In the ADxS.org symptom test, n = 353 participants reported having used cannabis more frequently. This group of subjects showed significantly increased impulsivity and inner restlessness in adulthood and significantly increased hyperactivity in school age, while inattention and distractibility did not differ compared to non-cannabis-using people with ADHD.
Hypothesis:
It is possible that this group-specific difference in self-medication, in conjunction with the finding that chronic cannabinoid use lowers dopamine levels in the PFC, could be an indication of increased dopamine levels in the PFC in hyperactivity/impulsivity.
In view of the inverse coupling of dopamine levels between the PFC and the striatum (“dopamine seesaw”), it should be considered whether the reduced dopamine synthesis capacity in the striatum could be the consequence of increased dopamine levels.

THC effect in other brain regions

A single acute dose of THC increases dopamine levels in the striatum in humans98 as in rats.9At the same time, regular cannabis users showed a dose-dependent reduction in dopamine synthesis capacity in the striatum.99
In rats that received THC for 8 days:100

  • CBR binding and [35S]GTPgammaS binding stimulated by WIN-55,212-2 reduced (except in the limbic forebrain)
  • AEA increased 4-fold in the limbic forebrain
  • AEA reduced in the striatum
  • AEA unchanged in brain stem, hippocampus, cerebellum, cortex
  • NArPE tends to be reduced in the limbic forebrain, unchanged in the striatum
  • 2-AG in the striatum decreased, otherwise unchanged
    Chronic THC administration in the hippocampus of mice101
  • reduced effectiveness of cannabinoids on GABA release
  • dose-dependent significant CB1R downregulation
    • complete recovery of the receptors required several weeks after cessation of THC administration
      Chronic THC administration in rats:102
  • AEA reduced in
    • Cerebellum
    • Midbrain
    • Diencephalon
    • Caudatus putamen
  • AEA increases in
    • Brain stem
    • Hippocampus
    • limbic forebrain (light)
  • 2-AG reduced
    • Caudatus putamen
  • 2-AG unchanged
    • Diencephalon
  • 2-AG increased
    • Cerebellum
    • Brain stem
    • Midbrain
    • Hippocampus
    • Cerebral cortex
    • limbic forebrain
This long-term effect correlates neurochemically with hypofrontality[^4][^103] [^104] , defined as a state of reduced cerebral blood flow and reduced neuronal activity of the PFC[^105][^106] and an imbalance of the cortical-subcortical network in terms of dopamine, glutamate and especially acetylcholine, among other things.[^107] Hypofrontality is also present in ADHD, where it is considered the cause of executive dysfunction.[^105][^108]

CB1R antagonists regulate dopamine differently depending on the brain region. Systemic CB1R antagonist administration significantly increases dopamine only in the cortex and leaves dopamine in the nucleus accumbens unchanged103, which indicates an addiction-inhibiting and pro-cognitive effect of CB1R agonists4
Cortical DA circuits control mesolimbic DA activation, and an increase in DA in the prefrontal cortex is expected to reduce DA activity in the accumbens.4 This ties in with the PFC-striatum-dopamine seesaw that we have mentioned several times before. More on this under The dopamine seesaw between the PFC and subcortical regions (including the striatum) In the article Interactions of the dopaminergic brain areas in the section Neurotransmitters in ADHD / Dopamine in the chapter Neurological aspects.

2. Cannabinoids regulate dopamine

2.1. Endocannabinoids regulate dopamine via DA neurons in the midbrain

Endocannabinoids regulate dopaminergic neurotransmission, in particular via:5

  • the activity of the DA neurons in the midbrain
    • CB1R agonists increase in vivo
      • the firing of DA cells in SNc and VTA in vivo1047779105
        • with rapid desensitization through repeated cannabinoid administration106
        • In detail77
          • Cannabinoid agonists increased the firing rate of PFC pyramidal neurons projecting into the VTA
          • Electrical VTA stimulation led to phasic inhibition in 79% of PFC pyramidal neurons
          • Cannabinoid agonists reversed this inhibition in 73% to 100% of the neurons tested
          • A subsequent selective CB1R antagonist suppressed the effect of the cannabinoid agonists and restored the inhibitory response to VTA stimulation
      • dA release in the nucleus accumbens in vivo107108
        • Cannabinoid mimetics inhibited stimulus-induced GABA-mediated inhibitory postsynaptic currents (IPSC) in the nucleus accumbens109
        • Cannabinoid agonists also inhibit the increased firing rate of nucleus accumbens shell neurons caused by stimulation of the basolateral amygdala or the mPFC37
      • the single-spike firing and burst rates of DA neurons in vitro5
      • CB1R agonists mediate presynaptic inhibition of glutamatergic transmission in dopamine neurons of the VTA24
      • activation of CBR at infralimbic glutamatergic terminals in the nucleus bed of the stria terminalis inhibits dopamine neurons in the VTA39
    • CB1R antagonists in VTA, PFC or nucleus accumbens, but not in amygdala, reduce reward-seeking behavior24110
    • CB1Rs facilitate or suppress the activity of dopamine neurons depending on their presynaptic location
      • CB1Rs reduce the likelihood of neurotransmitter release, which promotes dopaminergic activity at GABAergic terminals by suppressing inhibitory input to GABA-A or GABA-B receptors on dopamine neurons11111280
      • at glutamatergic synapses, CB1R suppress excitatory drive to AMPA or NMDA receptors on DA neurons80
    • 2-AG5
      • is synthesized by dopamine neurons via DGLα
      • is then released postsynaptically by the dopamine neurons
      • binds to presynaptic CB1R of
        • GABAergic terminals
        • glutamatergic terminals
      • DGLα activity is influenced by
        • increased Ca2+ flow (e.g. after iGluR signaling)
        • Gg/11-GPCR binding
          • Orexin-1 receptors113114
          • Alpha1-adrenoceptors34
          • mGluR5 glutamate receptors34
          • Insulin receptors115
          • Neurotensin receptors116117

2.1.1. CB1R and CB2R also on dopaminergic neurons

Contrary to the previous assumption that dopamine neurons do not express CB1R118 CB1R are also found on dopaminergic neurons of the VTA 119 12038

The CB1R is also found on neurons that express DRD1121
The CB1R could therefore directly influence the release of dopamine.122

CB2R receptors on dopaminergic neurons have also been reported.5360123124
A deletion of CB2Rs in dopamine neurons53

  • improved motor activity
  • modulates anxiety- and depression-like behaviors
  • reduced the rewarding properties of alcohol

2.2. Endocannabinoids regulate dopamine release from axonal terminals

Endocannabinoids regulate dopaminergic neurotransmission, in particular via the release of dopamine at axonal terminals:5125

  • Endocannabinoids also control dopamine release via local modulation of the afferent terminal input at the dopamine axon terminals
  • MSNs of the striatum can synthesize endocannabinoids “on-demand” and release them postsynaptically, which then bind to presynaptic CB1Rs (mostly GABAergic or glutamatergic neurons).
  • Striatal cholinergic interneurons are a potential source of endocannabinoid modulation. These regulate dopamine release independently of cell body activation.126127 So far, however, no CB1Rs have been found on striatal cholinergic interneurons.

2.3. Endocannabinoids inhibit DAT dopamine reuptake

A number of endocannabinoids128, such as AEA, reduce DAT activity.129130 AEA strongly reduces DAT uptake Vmax, with a simultaneous slight decrease in Km.131
Endocannabinoids also inhibit striatal adenosine reuptake128, which counteracts the positive effect of DAT inhibition on ADHD.

FAAH inhibition could be replicated in the mouse striatum by stimulating D2 dopamine receptors, but not D1R. The D2R/D3R/D4R agonist quinpirole increased AEA in the dorsal striatum by 8-fold and simultaneously increased motor hyperactivity.132
DAT-KO mice showed reduced AEA levels in the striatum.133

RTI-371 is both a positive allosteric modulator of CB1R and a selective DAT inhibitor.134

2.4. Endocannabinoids act on dopamine receptors

Endocannabinoids69

  • act on dopamine D1 receptors
    • the AEA reuptake inhibitor AM404 blocked D1R-mediated grooming
      • but not with D1R-KO mice
    • aEA reuptake inhibitor AM404 inhibits contralateral turning induced by unilateral intrastriatal infusion of D1 receptor agonists
    • the cannabinoid antagonist SR141716A enhances the contralateral turning induced by unilateral intrastriatal infusion of D1 receptor agonists
  • act on dopamine D2 receptors
    • the AEA reuptake inhibitor AM404 blocked D2 receptor-mediated oral stereotypies

2.5. Endocannabinoids influence phasic and tonic dopamine firing

CB2 agonists inhibit dopamine neuron firing and terminal dopamine release.135136137 The CB2R agonist JWH133 reduced behavioral deficits and iron accumulation caused by dopaminergic neuron destruction in Parkinson’s disease model rats.138

2.5.1. Cannabinoids increase phasic dopamine firing

2-AG is synthesized “on demand” during increased activity and then increases the phasic release of dopamine. 2-AG has little effect on tonic dopamine release.
Stimuli that enhance the firing of DA cells (e.g., rewards) promote the mobilization of 2-AG and initiate a positive feedback loop that facilitates subsequent DA function and appetitive behavior.5
CB1R antagonists or 2-AG synthesis inhibitors do not impair the firing of dopaminergic neurons per se139 or the dopamine increase in the nucleus accumbens per se34, but limit the increase in dopaminergic firing caused by behavioral changes or medication.3532
CB1R antagonists inhibit the ability of dopaminergic drugs (e.g. cannabinoids, nicotine, ethanol, cocaine, amphetamine) to cause a high phasic dopamine release.140125141

Exogenous cannabinoids such as THC and WIN55,212-2 increased phasic neuronal dopamine activity, the number of burst events and the number of impulses occurring per burst in the VTA33142 143 and increased extracellular dopamine in the nucleus accumbens143

2.5.2. Cannabinoids increase tonic dopamine firing

THC and WIN55,212-2 increase dopamine levels in the nucleus accumbens via CB1R via increased tonic dopamine firing in the VTA.33

2.6. 2-AG modulates integration of intrinsic and extrinsic dopaminergic inputs

Dopamine neurons of the substantia nigra pars compacta, the VTA and the retrorubal field integrate intrinsic and extrinsic inputs of sensory, motor and cognitive information to determine the highest reward probability.144
2-AG is involved in the fine regulation of the excitability of dopamine neurons by modulating the strength of the synapses that hit them.145146

2.7. Inverted-U effect of endocannabinoids

Like catecholamines, endocannabinoids also exhibit an inverted-U mechanism of action. While medium doses increase sexual activity and motivation, higher doses lead to reduced motivation.9
Study results on the effects of cannabinoids must therefore be set in relation to the respective doses used.

2.8. GABA pathway

This paragraph is mainly based on the review by El Khoury et al.4

Normally, VTA dopamine neurons are subject to constant and significant inhibition by GABAergic inputs.33
Endocannabinoids can inhibit GABA and thereby eliminate the GABA-mediated inhibition of the VTA dopamine neurons. as a result, the VTA dopamine neurons become more active.

CB1R can be found

  • in high numbers on GABAergic interneurons in the hippocampus, amygdala and PFC.147 Significantly fewer CB1Rs are found on glutamatergic, dopaminergic or cholinergic neurons than on primarily GABAergic projecting neurons. This shows the importance of the GABAergic influence of cannabinoids. For example, the CB1R agonist WIN55,212-2 reduces GABAergic neurotransmission in vitro by an order of magnitude more than glutamatergic neurotransmission.4
  • moderately abundant in various cortical structures, especially in superficial and deep layers, presumably on GABAergic interneurons.148149150 The same applies to endocannabinoids binding to CB1R (ARA, 2-AG and the AEA precursor N-arachidonoyl-phosphatidylethanolamine (NArPE).151

Cannabinoid agonists from midbrain dopaminergic neurons125 inhibit GABA release via presynaptic CB1R, which subsequently increases the activity of dopaminergic neurons.12
The activation of4

  • CB1R in GABAergic terminals disinhibits the network and increases glutamate
  • CB1R in pyramidal neurons reduces glutamatergic activity

Due to the predominant expression of CB1R on GABA interneurons, cannabinoids increase the activity of pyramidal neurons in layers II and III4
In layer V, the CB1R-glutamate effect predominates, resulting in reduced selective excitatory outputs, leading to glutamatergic hypoactivity.4152

The duration of CB1R-mediated plasticity is determined by different stimuli153

  • short-term GABAergic transmission inhibition by short-term postsynaptic depolarization via inhibition of voltage-gated calcium channels by CB1R148154
  • long-term disinhibition of pyramidal cells in the CA1 hippocampus (eCB-dependent long-term depression, eCB-LTD) by intense high-frequency synaptic stimulation155154 156 via CB1R-mediated regulation of presynaptic protein kinase A (PKA) and the phosphatase calcineurin157158 .

The disinhibition of VTA dopamine neurons by endocannabinoids can be intrinsic or extrinsic:23

  • intrinsic by acting on GABAergic interneurons159
    • GABAergic interneurons preferentially target GABA-A receptors located on DA neurons of the VTA160
      • Interneurons targeting GABA-B-R do not appear to respond to endocannabinoids161
    • The GABA-A receptor antagonist bicuculline as well as the CB1R antagonist SR141716A (rimonabant) inhibit the excitatory effect of CB1R agonists HU-210 in vitro106
    • The CB1R agonist WIN55, 212-2 inhibits IPSC (electrically evoked inhibitory postsynaptic currents) via the GABA-A receptor111
      • The CB1R antagonist rimonabant prevents this inhibition.
  • extrinsic via GABAergic afferents (inputs)15980
    • GABAergic afferents preferentially target GABA-B receptors160
    • The CB1R agonist WIN55, 212-2 reduces the amplitude of GABAB-mediated IPSCs via CB1R
    • The origin of these VTA-GABA afferents is still unknown. They are conceivable:23
      • Nucleus accumbens (mediates appetitive behavior via the integration of inputs from cortical and limbic structures)9
        • No direct influence of CB1R on MSNs of the NAc:23 The MSNs of the nucleus accumbens do not project directly into the VTA via axon terminals to dopamine neurons (as previously assumed, which would directly inhibit dopamine activity), but the axons from the NAc mainly form synapses to non-DA neurons, but to neurons that have a fast inhibitory effect via GABA-A-R.162 In addition, MSNs of the NAc do not possess CB1Rs. In the NAc, CB1Rs are rather located on fast-spiking interneurons (FSI).163
        • However, CB1R strongly inhibits MSN of the NAc via FSI in the NAc, which express CB1R. In addition, CB1R-FSI synapses on MSN of the NAc undergo LTD by endocannabinoids164
      • ventral pallidum (involved in the differentiation of wanting, liking and reward expectation)1659
        • GABA projections from the ventral pallidum modulate the neuronal firing of VTA dopamine neurons under cannabinoid control:166
          • Endocannabinoids in the ventral pallidum reduced the neuronal activity of VTA dopamine neurons
          • The NMDA glutamate receptor antagonist phencyclidine increased the neuronal activity of VTA dopamine neurons
      • rostromedial tegmental nucleus (important for processing aversive and appetitive stimuli):23167
        • GABA projections from the RMTg modulate cannabinoid-controlled neuronal firing of VTA dopamine neurons
        • The RMTg receives dense, mostly glutamatergic inputs from the lateral habenula (which encodes aversive stimulation) and mediates the inhibitory effect of the lateral habenula on midbrain dopamine neurons. The RMTg neurons that project to the VTA form inhibitory synapses, so that activation of this input by electrical stimulation inhibits DA firing.
        • CB1R agonists inhibit the firing rate of RMTg-GABA neurons in a long-lasting manner by reducing the amplitude of excitatory postsynaptic currents. CB1R agonists significantly increase the paired-pulse ratio, suggesting that the CB1R agonist causes a reduction in glutamate release by activating presynaptic receptors. Inhibition of GABA neurons in the RMTg correlates with an increase in firing of VTA dopamine neurons.

The CB1R agonist THC activates dopamine. THC activates CB1R on GABA neurons, which inactivate the GABA neurons. This deactivates the GABA neurons, which inhibit the dopamine neurons. The dopamine neurons are thus less inhibited and therefore more active.168169142
The CB1R agonist THC thus has a dopamine-increasing effect in the nucleus accumbens. Adenosine A2A receptor antagonists (e.g. caffeine) counteract this.170
Pretreatment with the cannabinoid antagonist rimonabant (SR141716A) enhanced the locomotor activation induced by dopamine agonists132171 , while CB1R antagonists alone did not induce activation.
THC also acts on CB2R.172
Cannabinoid agonists inhibited the effects of cocaine173
This indicates that CB1R has an inhibitory effect on motor activity.
Against this background, it seems conclusive that a reduced CB1R level correlates with hyperactivity and impulsivity.174

2.9. Glutamate pathway

This section is mainly based on the review by El Khoury et al.4

Dopaminergic activity is modulated by glutamatergic projections, including those from the cortex and amygdala:175

  • indirect modulation inhibits dopamine release:
    • Glutamatergic inputs and dopaminergic projections converge on GABAergic striatal MSNs176
  • direct innervation increases dopamine release
    • cortical glutamatergic neurons transmit directly to VTA dopamine neurons
      The net effect of dopamine release is the sum of inhibition and increase.

Endocannabinoids from midbrain dopaminergic neurons125 mediate presynaptic inhibition of glutamatergic transmission in dopamine neurons of the VTA via CB1R.51 CB1R activation causes a decrease in glutamate release, followed by a decrease in GABA activity, which in turn leads to an increase in firing of dopaminergic neurons.12177

CB1R are found in glutamatergic and/or GABA-ergic synapses in cortical and subcortical structures.12
The acute increase of the dopamine level in the PFC by cannabinoids via VTA presumably occurs by means of a prior increase in glutamate release and/or inhibition of GABA. However, this view from 2002 still assumed that no CB1Rs are found on dopaminergic neurons.95

Activation of CB1R on glutamatergic neurons reduces the probability of glutamate release, which has several Consequences:23

  • the excitatory glutamatergic inputs to dopamine neurons are reduced51, which limits their burst firing
  • the inhibitory effect of GABA on dopamine neurons is reduced
    • Glutamate binds to (presumably GluN2A-178
    • a lower release of glutamate reduces the inhibitory effect of dopamine
      Endocannabinoids can theoretically reduce the probability of glutamate release. In practice, however, this effect is limited because CB1Rs are more abundant on GABAergic terminals than on glutamatergic terminals179. The simultaneous effect of reduced glutamate release and CB1R-induced activation of GABA neurons would reduce the number of tonically firing dopamine neurons, increasing the likelihood of bursts once NMDA receptors are activated.180181 However, there are also other explanatory models182

Interactions between glutamate, dopamine, cannabinoids and glutamate influence synaptic plasticity.4183

Dopamine regulates long-term potentiation (LTP) as well as long-term depression (LTD)183 in the striatum, PFC and VTA.
Stimulants modulate LTP and LTD in the PFC.184185
Glutamate regulates dopamine in the soma as well as on terminals of the VTA and substantia nigra. Deactivation of glutamatergic inputs in the VTA alters burst firing patterns in the VTA.186
Endocannabinoids modulate the reciprocal regulation of dopamine and glutamate in the striatum and cortex at terminals.4

In the striatum:4

  • Dopamine receptors
    • D1R promote striatal glutamatergic LTP183187188
    • D1Rs inhibit AEA in D1-expressing MSNs189, which increases glutamate release. CB1Rs counteract this by presynaptically reducing glutamate and postsynaptically inhibiting adenylyl cyclase (while D1Rs increase it), which counteracts LTP induction.187
    • D2R promote striatal glutamatergic LTD187190191
    • D2R and NMDA-NR2B form heteromers in the striatum.192
    • Dopamine increases (via CB1R) the frequency of glutamatergic inputs in D1-expressing medium spiny neurons and decreases them (via CB1R) in D2-expressing MSNs.193194
    • D2Rs increase the synthesis and release of AEA in the striatum.195 When AEA binds to presynaptic CB1R on glutamatergic terminals, this decreases glutamate. This could contribute to corticostriatal LTD.196187
  • CB1R
    • CB1R attenuate 197 (as well as D2R198 ) cortical glutamate input and regulate corticostriatal LTD191
    • Other representation: CB1R act in the opposite direction to D2R.199
      • Cannabinoid modulation of presynaptic glutamate release on neurons expressing Gi-coupled D2Rs appears to facilitate D2R-mediated inhibition, while CB1R activation in GABAergic terminals may counteract this inhibition.
    • the influence of CB1R appears to be stronger than that of TRPV1, which could also be due to the rapid desensitization of TRPV1200
  • TRPV1
    • tRPV1 increase glutamatergic transmission presynaptically200 and promote striatal LTD196
  • Endocannabinoids promote LTD in D2-expressing MSN by binding to postsynaptic TRPV1196

In the cortex:4

  • Dopamine receptors
    D1R and D2R are colocalized in many cortical pyramidal neurons and interneurons.
    • D1R activate glutamate in the cortex201
      • via postsynaptic intracellular Ca2+ and protein kinase A (PKA), independent of membrane depolarization
    • D2R inhibit glutamate in the cortex201
      • indirectly via GABA interneurons
      • postsynaptically via phospholipase lipase C-IP3, intracellular Ca2+ and inhibition of PKA
    • GABA interneurons modulate glutamatergic plasticity and cortical functions202
    • Excitatory and inhibitory neuronal activity form a dynamic balance to map executive functions and goal-oriented behavior202
  • Interneurons
    There are several types of cortical interneurons with different functions, only some of which contain CB1R.1532034
    • CB1R are found on cholecystokinin-containing cortical interneurons202
    • Since CB1R is found on some fast-spiking (striatal)6869 70 71 parvalbumin-containing interneurons, an existence on cortical parvalbumin-containing interneurons is conceivable
  • TRPV1
    • TRPV1 are strongly expressed in the cortex on pyramidal neurons.204
    • TRPV1 are also involved in synaptic plasticity in the hippocampus205 and striatum (see above).

Glutamate is also released from gliosomes in response to stimuli. CB1R increased, CB2R and TRPV1 decreased this glutamate release from gliosomes206

Cortical and subcortical glutamate circuits show different binding methods and consequently different effects:4
At corticostriatal MSN synapses, subcortical thalamostriatal glutamatergic projections enter at the same time.207
In the striatum, cortical and subcortical projections enter spatially clearly separated synapses. At the same time, the expression of presynaptic glutamatergic elements differs at cortical and subcortical terminals.208209

  • cortical glutamatergic synaptic terminals:
    • express VGLUT1 207 (changes have a long-term effect)
    • less than 5 % express mGluR1a 210 (binding is acute)
  • subcortical, especially thalamic glutamatergic terminals:
    • express VGLUT2 207 (changes have a long-term effect)
    • more than 50 % express mGluR1a 210 (binding acts acutely)

Reduced VGLUT1 increases the risk of depression211, antidepressants increase cortical VGLUT1.212, antipsychotics increase VGLUT2.213.
Deactivated VGLUT2 in the cortex, hippocampus and amygdala lead to hyperactivity, increased risk-taking behavior, reduced social dominance, increased sensitivity and impaired long-term spatial memory, while striatal dopamine increased by 17%. AMP additionally increased the activity.175
VGLUT2 on dopamine neurons is required for the behavior-activating effect of stimulants.214215 Drug doses of MPH or AMP alter VMAT2 function 216 217 218 219220

CB1R are found in the striatum on terminals of both cortical (VGLUT1-positive) and subcortical (VGLUT2-positive) axons.76
Presynaptic D2Rs on corticostriatal terminals (VGLUT1-positive) inhibit inputs from the cortex without affecting VGLUT2-positive inputs of glutamatergic afferents from the ventral subiculum.221

Endocannabinoids mediate LTD in the striatum222 and in the cortex223 via mGluR5 activation.
mGluR of groups I and II such as D1R and D2R trigger LTD in the cortex via mitogen-activated protein kinases (MAP-K). MGluR activation with simultaneous strong dopamine input had a synergistic effect.224225
Acute cocaine administration inhibits endocannabinoid-mediated LTD by reducing surface expression of the functional mGluR5 receptor complex, possibly via D1R.226
Acute THC administration also inhibits endocannabinoid-mediated LTD. This can be reversed by activation of mGluR2/mGluR3 in corticostriatal glutamatergic terminals (where the receptors are co-expressed).227

Endocannabinoids, dopamine and mGluR5 receptors appear to interact for optimal synaptic plasticity
Plasticity of inhibitory transmission in the PFC (I-LTD) is regulated by endocannabinoids via mGluR5 activation and facilitated by D2R transactivation.3228
VTA-D2R in conjunction with group I - mGluR (mGluR1, mGluR5) induced endocannabinoid-mediated LTD and I-LTD in excitatory glutamatergic and inhibitory GABAergic synapses.228

2.10. Stimulants regulate dopamine via endocannabinoids

Amphetamine increases dopamine levels in the nucleus accumbens via an action potential-dependent mechanism that is modulated by endocannabinoids.35
Stimulants such as cocaine229113 34 and nicotine 230 trigger 2-AG synthesis in the VTA. This suppresses GABAergic input, which disinhibits the dopamine neurons.5
The CB1 receptor antagonist rimonabant and the CB2 receptor agonist JWH133 prevented cocaine-induced hypermotor activity.231
CB1R-KO mice do not experience behavioral stimulation by amphetamines.232

The TRPV1 agonist capsaicin increased the firing rate of VTA dopamine neurons in a dose-dependent manner and triggered bursts in almost half of them. This was mediated by enhanced glutamatergic transmission. Consequences were a simultaneous increase in pain stimulus-dependent dopamine release in the nucleus accumbens.64

Methylphenidate and MPH-induced increase in dopamine decreased AEA and 2-AG in the limbic forebrain of mice189

3. Dopamine regulates endocannabinoids

Intense neuronal activity leads to the synthesis and release of endocannabinoids. During phasic dopamine bursts, which release significant amounts of dopamine, endocannabinoids are produced by activated enzymes (e.g. DAGL, NAPE) and subsequently released extracellularly by passive diffusion through the cell membrane.43

Dopamine neurons in the midbrain9

  • synthesize endocannabinoids
  • release endocannabinoids51
  • possess CB1R on their own axon terminals
  • break down endocannabinoids and endocannabinoid relatives

Dopamine appears to increase the release of endocannabinoids via D2 receptors, which subsequently bind retrogradely to the CB1R

  • in the VTA51
  • in the striatum (AEA increased)195132
  • Levodopa caused an increase in AEA in the basal ganglia via D1R and D2R. In rats with dopaminergic and noradrenergic neurons destroyed by 6-OHDA, levodopa did not alter endocannabinoid levels.233

AEA in turn inhibits the reactions mediated via D2R.234

4. Endocannabinoid-dopamine-adenosine interaction

The D2 agonist quinpirole induces hyperlocomotion. This is inhibited by CB1R agonists. CB1R inhibition was blocked by the A2AR antagonist MSX-3 as well as by the CB1R antagonist rimonabant.235
CB1R in caudate and putamen form heteromers with adenosine A2A receptors. CB1R-mediated motor inhibition in the striatum is fully dependent on A2AR activation (in the form of CB1R-ADA2 heteromers) and is abolished by A2AR antagonists. This interaction could be regulated by CB1R-D2R-A2AR heteromultimers235

5. Endocannabinoids regulate synaptic plasticity

General information on synaptic plasticity at Synaptic plasticity: learning and unlearning in the article Neurological basics.

5.1. Short-term plasticity

5.1.1. Depolarization induces suppression of inhibition (DSI) or excitation (DSE)

Depolarization caused by strong activation (repeated action potential or a step depolarization) induces a transient suppression of inhibition (DSI) or excitation (DSE) in many neurons.236
This inhibition suppression lasts for a few dozen seconds.
Endocannabinoids, especially 2-AG; are an important retrograde messenger for DSI and DSE in the hippocampus, cerebellum and other brain regions.236 The sex-dependent differences in DSI strength in Lister Hood rats did not result from the number or function of CB1R (activated by 2-AG), but rather from tonic 2-AG signaling237
Endocannabinoids regulate DSI more strongly than DSE.243

5.1.2. Metabotropic-induced suppression of inhibition (MSI) or excitation (MSE)

Metabotropic (by means of a metabolic process) induced suppression of inhibition (MSI) or excitation (MSE) are forms of short-term synaptic plasticity236

Endocannabinoids induce MSI / MSE after the activation of a postsynaptic Gq/11-linked GPCR and the activation of a phospholipase Cβ. Phospholipase C produces diacylglycerol. This is deacylated to 2-AG by the diacylglycerol lipase. The 2-AG diffuses towards the presynapse and binds to CB1R, which inhibits synaptic transmission.148
The calcium sensitivity of PLCβ1 leads to a synergistic interaction of DSI/DSE and MSI/MSE236

5.2. Long-term plasticity

5.2.1. Long-term potentiation (LTP)

Long-term potentiation (LTP) is a universal form of long-lasting strengthening of synaptic connections.

5.2.2. Long-term depression (LTD)

Long-term depression (LTD) is a universal form of prolonged reduction in synaptic connections.
There are homosynaptic LTD and heterosynaptic LTD. For an introduction, see Synaptic plasticity: learning and unlearning in the article Neurological basics.

Endocannabinoids can trigger homosynaptic, heterosynaptic or autaptic LTD.236238 Heterosynaptic LTD by endocannabinoids at inhibitory synapses in the hippocampus appears to require inhibition of adenylyl cyclase and involvement of the presynaptic proteins RIM1α and RAB3B. Endocannabinoid LTD at inhibitory synapses increases dendritic excitability, which enhances excitatory transmission in a narrow spatial range.
Endocannabinoid-mediated LTD appears to be involved in the maturation of cortical circuits and may occur with or without the involvement of CB1R.{Lu HC, Mackie K (2016): An Introduction to the Endogenous Cannabinoid System. Biol Psychiatry. 2016 Apr 1;79(7):516-25. doi: 10.1016/j.biopsych.2015.07.028. PMID: 26698193; PMCID: PMC4789136. REVIEW}}
According to another account, CB1R in glutamatergic terminals of the PFC projecting to the NAc are indispensable for LTD.239 CB1R-KO mice showed no LTD at corticostriatal synapses191 and exhibit impaired habit formation and increased exploratory behavior.240 Similarly, FOXP2 is required for LTD and FOXP2-KO mice and blackbirds show disorders in LTD and learning.239 Both CB1R and FOXP2 are candidate genes in ADHD.
Autaptic LTD: autaptic neurons exhibit both endocannabinoid-mediated DSE and MSE. Autaptic LTD is dependent on CB1R, whereby autaptic LTD is not induced via the G(i/o) or G(s) proteins typically activated by CB1R, but via G(q) proteins238

5.2.3. Slow self inhibition (SSI)

Slow self-inhibition (SSI) is a process that suppresses neuronal excitability. SSI occurs mainly in low-threshold spiking cortical interneurons and cerebellar basket cells, but also in some main cortical cells.236
Endocannabinoids, in particular the synthesis of 2-AG during intense stimulation of the neuron, leads to activation of somatic CB1R and somatic potassium conductance, probably an inwardly rectifying potassium channel, and causes SSI.241242


  1. Kibret BG, Canseco-Alba A, Onaivi ES, Engidawork E (2023): Crosstalk between the endocannabinoid and mid-brain dopaminergic systems: Implication in dopamine dysregulation. Front Behav Neurosci. 2023 Mar 16;17:1137957. doi: 10.3389/fnbeh.2023.1137957. PMID: 37009000; PMCID: PMC10061032. REVIEW

  2. Laksmidewi AAAP, Soejitno A (2021): Endocannabinoid and dopaminergic system: the pas de deux underlying human motivation and behaviors. J Neural Transm (Vienna). 2021 May;128(5):615-630. doi: 10.1007/s00702-021-02326-y. PMID: 33712975; PMCID: PMC8105194. REVIEW

  3. Chiu CQ, Puente N, Grandes P, Castillo PE (2010): Dopaminergic modulation of endocannabinoid-mediated plasticity at GABAergic synapses in the prefrontal cortex. J Neurosci. 2010 May 26;30(21):7236-48. doi: 10.1523/JNEUROSCI.0736-10.2010. PMID: 20505090; PMCID: PMC2905527.

  4. El Khoury MA, Gorgievski V, Moutsimilli L, Giros B, Tzavara ET (2012): Interactions between the cannabinoid and dopaminergic systems: evidence from animal studies. Prog Neuropsychopharmacol Biol Psychiatry. 2012 Jul 2;38(1):36-50. doi: 10.1016/j.pnpbp.2011.12.005. PMID: 22300746. REVIEW

  5. Covey DP, Mateo Y, Sulzer D, Cheer JF, Lovinger DM (2017): Endocannabinoid modulation of dopamine neurotransmission. Neuropharmacology. 2017 Sep 15;124:52-61. doi: 10.1016/j.neuropharm.2017.04.033. PMID: 28450060; PMCID: PMC5608040. REVIEW

  6. García C, Palomo-Garo C, Gómez-Gálvez Y, Fernández-Ruiz J (2016): Cannabinoid-dopamine interactions in the physiology and physiopathology of the basal ganglia. Br J Pharmacol. 2016 Jul;173(13):2069-79. doi: 10.1111/bph.13215. PMID: 26059564; PMCID: PMC4908199. REVIEW

  7. Fernández-Ruiz J, Gonzáles S (2005): Cannabinoid control of motor function at the basal ganglia. Handb Exp Pharmacol. 2005;(168):479-507. doi: 10.1007/3-540-26573-2_16. PMID: 16596785. REVIEW

  8. Parsons LH, Hurd YL (2015): Endocannabinoid signalling in reward and addiction. Nat Rev Neurosci. 2015 Oct;16(10):579-94. doi: 10.1038/nrn4004. PMID: 26373473; PMCID: PMC4652927. REVIEW

  9. Sagheddu C, Muntoni AL, Pistis M, Melis M (2015): Endocannabinoid Signaling in Motivation, Reward, and Addiction: Influences on Mesocorticolimbic Dopamine Function. Int Rev Neurobiol. 2015;125:257-302. doi: 10.1016/bs.irn.2015.10.004. PMID: 26638769. REVIEW

  10. Oleson EB, Hamilton LR, Gomez DM (2021): Cannabinoid Modulation of Dopamine Release During Motivation, Periodic Reinforcement, Exploratory Behavior, Habit Formation, and Attention. Front Synaptic Neurosci. 2021 Jun 10;13:660218. doi: 10.3389/fnsyn.2021.660218. PMID: 34177546; PMCID: PMC8222827. REVIEW

  11. Kumar U (2024): Cannabinoids: Role in Neurological Diseases and Psychiatric Disorders. Int J Mol Sci. 2024 Dec 27;26(1):152. doi: 10.3390/ijms26010152. PMID: 39796008; PMCID: PMC11720483. REVIEW

  12. Fernández-Ruiz J, Hernández M, Ramos JA (2010): Cannabinoid-dopamine interaction in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther. 2010 Jun;16(3):e72-91. doi: 10.1111/j.1755-5949.2010.00144.x. PMID: 20406253; PMCID: PMC6493786. REVIEW

  13. Oleson EB, Cheer JF (2012): A brain on cannabinoids: the role of dopamine release in reward seeking. Cold Spring Harb Perspect Med. 2012 Aug 1;2(8):a012229. doi: 10.1101/cshperspect.a012229. PMID: 22908200; PMCID: PMC3405830. REVIEW

  14. D’Souza DC (2007): Cannabinoids and psychosis. Int Rev Neurobiol. 2007;78:289-326. doi: 10.1016/S0074-7742(06)78010-2. PMID: 17349865. REVIEW

  15. Melis M, Gessa GL, Diana M (2000): Different mechanisms for dopaminergic excitation induced by opiates and cannabinoids in the rat midbrain. Prog Neuropsychopharmacol Biol Psychiatry. 2000 Aug;24(6):993-1006. doi: 10.1016/s0278-5846(00)00119-6. PMID: 11041539.

  16. Fadda P, Scherma M, Spano MS, Salis P, Melis V, Fattore L, Fratta W (2006): Cannabinoid self-administration increases dopamine release in the nucleus accumbens. Neuroreport. 2006 Oct 23;17(15):1629-32. doi: 10.1097/01.wnr.0000236853.40221.8e. PMID: 17001282.

  17. Schlicker E, Timm J, Göthert M (1996): Cannabinoid receptor-mediated inhibition of dopamine release in the retina. Naunyn Schmiedebergs Arch Pharmacol. 1996 Dec;354(6):791-5. doi: 10.1007/BF00166907. PMID: 8971741.

  18. Kirkham TC, Williams CM, Fezza F, Di Marzo V (2002): Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol. 2002 Jun;136(4):550-7. doi: 10.1038/sj.bjp.0704767. PMID: 12055133; PMCID: PMC1573386.

  19. Kirkham TC, Williams CM (2001): Endogenous cannabinoids and appetite. Nutr Res Rev. 2001 Jun;14(1):65-86. doi: 10.1079/NRR200118. PMID: 19087417.

  20. Hodos W (1961): Progressive ratio as a measure of reward strength. Science. 1961 Sep 29;134(3483):943-4. doi: 10.1126/science.134.3483.943. PMID: 13714876. n = 4

  21. Aberman JE, Ward SJ, Salamone JD (1998): Effects of dopamine antagonists and accumbens dopamine depletions on time-constrained progressive-ratio performance. Pharmacol Biochem Behav. 1998 Dec;61(4):341-8. doi: 10.1016/s0091-3057(98)00112-9. PMID: 9802826.

  22. Bradshaw CM, Killeen PR (2012): A theory of behaviour on progressive ratio schedules, with applications in behavioural pharmacology. Psychopharmacology (Berl). 2012 Aug;222(4):549-64. doi: 10.1007/s00213-012-2771-4. PMID: 22752382. REVIEW

  23. Hernandez G, Cheer JF (2015): To Act or Not to Act: Endocannabinoid/Dopamine Interactions in Decision-Making. Front Behav Neurosci. 2015 Dec 17;9:336. doi: 10.3389/fnbeh.2015.00336. PMID: 26733830; PMCID: PMC4681836. REVIEW

  24. Oleson EB, Beckert MV, Morra JT, Lansink CS, Cachope R, Abdullah RA, Loriaux AL, Schetters D, Pattij T, Roitman MF, Lichtman AH, Cheer JF (2012): Endocannabinoids shape accumbal encoding of cue-motivated behavior via CB1 receptor activation in the ventral tegmentum. Neuron. 2012 Jan 26;73(2):360-73. doi: 10.1016/j.neuron.2011.11.018. PMID: 22284189; PMCID: PMC3269037.

  25. Fields SA, Lange K, Ramos A, Thamotharan S, Rassu F (2014): The relationship between stress and delay discounting: a meta-analytic review. Behav Pharmacol. 2014 Sep;25(5-6):434-44. doi: 10.1097/FBP.0000000000000044. PMID: 25089842. REVIEW

  26. Hernandez G, Oleson EB, Gentry RN, Abbas Z, Bernstein DL, Arvanitogiannis A, Cheer JF (2014): Endocannabinoids promote cocaine-induced impulsivity and its rapid dopaminergic correlates. Biol Psychiatry. 2014 Mar 15;75(6):487-98. doi: 10.1016/j.biopsych.2013.09.005. PMID: 24138924; PMCID: PMC3943889.

  27. Fatahi Z, Sadeghi B, Haghparast A (2018): Involvement of cannabinoid system in the nucleus accumbens on delay-based decision making in the rat. Behav Brain Res. 2018 Jan 30;337:107-113. doi: 10.1016/j.bbr.2017.10.004. PMID: 28987618.

  28. Wiskerke J, Stoop N, Schetters D, Schoffelmeer AN, Pattij T (2011): Cannabinoid CB1 receptor activation mediates the opposing effects of amphetamine on impulsive action and impulsive choice. PLoS One. 2011;6(10):e25856. doi: 10.1371/journal.pone.0025856. PMID: 22016780; PMCID: PMC3189229.

  29. Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, Acquas E, Carboni E, Valentini V, Lecca D (2004): Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology. 2004;47 Suppl 1:227-41. doi: 10.1016/j.neuropharm.2004.06.032. PMID: 15464140. REVIEW

  30. Wise RA, Robble MA (2020): Dopamine and Addiction. Annu Rev Psychol. 2020 Jan 4;71:79-106. doi: 10.1146/annurev-psych-010418-103337. PMID: 31905114. REVIEW

  31. Aragona BJ, Cleaveland NA, Stuber GD, Day JJ, Carelli RM, Wightman RM (2008): Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events. J Neurosci. 2008 Aug 27;28(35):8821-31. doi: 10.1523/JNEUROSCI.2225-08.2008. PMID: 18753384; PMCID: PMC2584805.

  32. Cheer JF, Wassum KM, Sombers LA, Heien ML, Ariansen JL, Aragona BJ, Phillips PE, Wightman RM (2007): Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation. J Neurosci. 2007 Jan 24;27(4):791-5. doi: 10.1523/JNEUROSCI.4152-06.2007. PMID: 17251418; PMCID: PMC6672925.

  33. Peters KZ, Oleson EB, Cheer JF (2021): A Brain on Cannabinoids: The Role of Dopamine Release in Reward Seeking and Addiction. Cold Spring Harb Perspect Med. 2021 Jan 4;11(1):a039305. doi: 10.1101/cshperspect.a039305. PMID: 31964646; PMCID: PMC7778214. REVIEW

  34. Wang H, Treadway T, Covey DP, Cheer JF, Lupica CR (2015): Cocaine-Induced Endocannabinoid Mobilization in the Ventral Tegmental Area. Cell Rep. 2015 Sep 29;12(12):1997-2008. doi: 10.1016/j.celrep.2015.08.041. PMID: 26365195; PMCID: PMC4857883.

  35. Covey DP, Bunner KD, Schuweiler DR, Cheer JF, Garris PA (2016): Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids. Eur J Neurosci. 2016 Jun;43(12):1661-73. doi: 10.1111/ejn.13248. PMID: 27038339; PMCID: PMC5819353.

  36. Fattore L, Fadda P, Spano MS, Pistis M, Fratta W (2008): Neurobiological mechanisms of cannabinoid addiction. Mol Cell Endocrinol. 2008 Apr 16;286(1-2 Suppl 1):S97-S107. doi: 10.1016/j.mce.2008.02.006. PMID: 18372102. REVIEW

  37. Pistis M, Muntoni AL, Pillolla G, Gessa GL (2002): Cannabinoids inhibit excitatory inputs to neurons in the shell of the nucleus accumbens: an in vivo electrophysiological study. Eur J Neurosci. 2002 Jun;15(11):1795-802. doi: 10.1046/j.1460-9568.2002.02019.x. PMID: 12081659.

  38. Wenger T, Moldrich G, Furst S (2003): Neuromorphological background of cannabis addiction. Brain Res Bull. 2003 Jul 15;61(2):125-8. doi: 10.1016/s0361-9230(03)00081-9. PMID: 12831997.

  39. Massi L, Elezgarai I, Puente N, Reguero L, Grandes P, Manzoni OJ, Georges F (2008): Cannabinoid receptors in the bed nucleus of the stria terminalis control cortical excitation of midbrain dopamine cells in vivo. J Neurosci. 2008 Oct 15;28(42):10496-508. doi: 10.1523/JNEUROSCI.2291-08.2008. PMID: 18923026; PMCID: PMC6671338.

  40. Redlich C, Dlugos A, Hill MN, Patel S, Korn D, Enneking V, Foerster K, Arolt V, Domschke K, Dannlowski U, Redlich R (2021): The endocannabinoid system in humans: significant associations between anandamide, brain function during reward feedback and a personality measure of reward dependence. Neuropsychopharmacology. 2021 Apr;46(5):1020-1027. doi: 10.1038/s41386-020-00870-x. PMID: 33007775; PMCID: PMC8114914. n = 30

  41. Luján MÁ, Covey DP, Young-Morrison R, Zhang L, Kim A, Morgado F, Patel S, Bass CE, Paladini C, Cheer JF (2023): Mobilization of endocannabinoids by midbrain dopamine neurons is required for the encoding of reward prediction. Nat Commun. 2023 Nov 20;14(1):7545. doi: 10.1038/s41467-023-43131-3. PMID: 37985770; PMCID: PMC10662422.

  42. Schultz (2016): Dopamine reward prediction error coding. Dialogues Clin Neurosci. 2016 Mar;18(1):23-32. doi: 10.31887/DCNS.2016.18.1/wschultz. PMID: 27069377; PMCID: PMC4826767. REVIEW REVIEW

  43. Everett TJ, Gomez DM, Hamilton LR, Oleson EB (2021): Endocannabinoid modulation of dopamine release during reward seeking, interval timing, and avoidance. Prog Neuropsychopharmacol Biol Psychiatry. 2021 Jan 10;104:110031. doi: 10.1016/j.pnpbp.2020.110031. PMID: 32663486. REVIEW

  44. Scherma M, Medalie J, Fratta W, Vadivel SK, Makriyannis A, Piomelli D, Mikics E, Haller J, Yasar S, Tanda G, Goldberg SR (2008): The endogenous cannabinoid anandamide has effects on motivation and anxiety that are revealed by fatty acid amide hydrolase (FAAH) inhibition. Neuropharmacology. 2008 Jan;54(1):129-40. doi: 10.1016/j.neuropharm.2007.08.011. PMID: 17904589; PMCID: PMC2213536.

  45. Forget B, Coen KM, Le Foll B (2009): Inhibition of fatty acid amide hydrolase reduces reinstatement of nicotine seeking but not break point for nicotine self-administration–comparison with CB(1) receptor blockade. Psychopharmacology (Berl). 2009 Sep;205(4):613-24. doi: 10.1007/s00213-009-1569-5. PMID: 19484221.

  46. Oleson EB, Cheer JF (2012): Paradoxical effects of the endocannabinoid uptake inhibitor VDM11 on accumbal neural encoding of reward predictive cues. Synapse. 2012 Nov;66(11):984-8. doi: 10.1002/syn.21587. PMID: 22807176; PMCID: PMC3440520.

  47. Gamaleddin I, Guranda M, Goldberg SR, Le Foll B (2011): The selective anandamide transport inhibitor VDM11 attenuates reinstatement of nicotine seeking behaviour, but does not affect nicotine intake. Br J Pharmacol. 2011 Nov;164(6):1652-60. doi: 10.1111/j.1476-5381.2011.01440.x. PMID: 21501143; PMCID: PMC3230812.

  48. van der Stelt M, Mazzola C, Esposito G, Matias I, Petrosino S, De Filippis D, Micale V, Steardo L, Drago F, Iuvone T, Di Marzo V (2006): Endocannabinoids and beta-amyloid-induced neurotoxicity in vivo: effect of pharmacological elevation of endocannabinoid levels. Cell Mol Life Sci. 2006 Jun;63(12):1410-24. doi: 10.1007/s00018-006-6037-3. PMID: 16732431; PMCID: PMC11136405.

  49. MedChemExpress: VDM11

  50. Tanimura A, Yamazaki M, Hashimotodani Y, Uchigashima M, Kawata S, Abe M, Kita Y, Hashimoto K, Shimizu T, Watanabe M, Sakimura K, Kano M (2010): The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase alpha mediates retrograde suppression of synaptic transmission. Neuron. 2010 Feb 11;65(3):320-7. doi: 10.1016/j.neuron.2010.01.021. PMID: 20159446.

  51. Melis M, Pistis M, Perra S, Muntoni AL, Pillolla G, Gessa GL (2004): Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. J Neurosci. 2004 Jan 7;24(1):53-62. doi: 10.1523/JNEUROSCI.4503-03.2004. PMID: 14715937; PMCID: PMC6729571.

  52. Silveira MM, Arnold JC, Laviolette SR, Hillard CJ, Celorrio M, Aymerich MS, Adams WK (2017): Seeing through the smoke: Human and animal studies of cannabis use and endocannabinoid signalling in corticolimbic networks. Neurosci Biobehav Rev. 2017 May;76(Pt B):380-395. doi: 10.1016/j.neubiorev.2016.09.007. PMID: 27639448; PMCID: PMC5350061. REVIEW

  53. Liu QR, Canseco-Alba A, Zhang HY, Tagliaferro P, Chung M, Dennis E, Sanabria B, Schanz N, Escosteguy-Neto JC, Ishiguro H, Lin Z, Sgro S, Leonard CM, Santos-Junior JG, Gardner EL, Egan JM, Lee JW, Xi ZX, Onaivi ES (2017): Cannabinoid type 2 receptors in dopamine neurons inhibits psychomotor behaviors, alters anxiety, depression and alcohol preference. Sci Rep. 2017 Dec 12;7(1):17410. doi: 10.1038/s41598-017-17796-y. PMID: 29234141; PMCID: PMC5727179.

  54. Maldonado R, Valverde O, Berrendero F (2006): Involvement of the endocannabinoid system in drug addiction. Trends Neurosci. 2006 Apr;29(4):225-32. doi: 10.1016/j.tins.2006.01.008. PMID: 16483675. REVIEW

  55. Hungund BL, Szakall I, Adam A, Basavarajappa BS, Vadasz C (2003): Cannabinoid CB1 receptor knockout mice exhibit markedly reduced voluntary alcohol consumption and lack alcohol-induced dopamine release in the nucleus accumbens. J Neurochem. 2003 Feb;84(4):698-704. doi: 10.1046/j.1471-4159.2003.01576.x. PMID: 12562514.

  56. Cossu G, Ledent C, Fattore L, Imperato A, Böhme GA, Parmentier M, Fratta W (2001): Cannabinoid CB1 receptor knockout mice fail to self-administer morphine but not other drugs of abuse. Behav Brain Res. 2001 Jan 8;118(1):61-5. doi: 10.1016/s0166-4328(00)00311-9. PMID: 11163634.

  57. Li X, Hoffman AF, Peng XQ, Lupica CR, Gardner EL, Xi ZX (2009): Attenuation of basal and cocaine-enhanced locomotion and nucleus accumbens dopamine in cannabinoid CB1-receptor-knockout mice. Psychopharmacology (Berl). 2009 May;204(1):1-11. doi: 10.1007/s00213-008-1432-0. PMID: 19099297; PMCID: PMC3729960.

  58. Castañé A, Valjent E, Ledent C, Parmentier M, Maldonado R, Valverde O (2002): Lack of CB1 cannabinoid receptors modifies nicotine behavioural responses, but not nicotine abstinence. Neuropharmacology. 2002 Oct;43(5):857-67. doi: 10.1016/s0028-3908(02)00118-1. PMID: 12384171.

  59. Asth L, Cruz LC, Soyombo N, Rigo P, Moreira FA (2023): Effects of β -caryophyllene, A Dietary Cannabinoid, in Animal Models of Drug Addiction. Curr Neuropharmacol. 2023;21(2):213-218. doi: 10.2174/1570159X20666220927115811. PMID: 36173065; PMCID: PMC10190141.

  60. Canseco-Alba A, Schanz N, Sanabria B, Zhao J, Lin Z, Liu QR, Onaivi ES (2019): Behavioral effects of psychostimulants in mutant mice with cell-type specific deletion of CB2 cannabinoid receptors in dopamine neurons. Behav Brain Res. 2019 Mar 15;360:286-297. doi: 10.1016/j.bbr.2018.11.043. PMID: 30508607; PMCID: PMC6327973.

  61. Ishiguro H, Iwasaki S, Teasenfitz L, Higuchi S, Horiuchi Y, Saito T, Arinami T, Onaivi ES (2007): Involvement of cannabinoid CB2 receptor in alcohol preference in mice and alcoholism in humans. Pharmacogenomics J. 2007 Dec;7(6):380-5. doi: 10.1038/sj.tpj.6500431. PMID: 17189959.

  62. García-Gutiérrez MS, Navarrete F, Gasparyan A, Navarro D, Morcuende Á, Femenía T, Manzanares J (2022): Role of Cannabinoid CB2 Receptor in Alcohol Use Disorders: From Animal to Human Studies. Int J Mol Sci. 2022 May 25;23(11):5908. doi: 10.3390/ijms23115908. PMID: 35682586; PMCID: PMC9180470. REVIEW

  63. Tian YH, Ma SX, Lee KW, Wee S, Koob GF, Lee SY, Jang CG (2018): Blockade of TRPV1 Inhibits Methamphetamine-induced Rewarding Effects. Sci Rep. 2018 Jan 17;8(1):882. doi: 10.1038/s41598-018-19207-2. PMID: 29343767; PMCID: PMC5772440.

  64. Marinelli S, Pascucci T, Bernardi G, Puglisi-Allegra S, Mercuri NB (2005): Activation of TRPV1 in the VTA excites dopaminergic neurons and increases chemical- and noxious-induced dopamine release in the nucleus accumbens. Neuropsychopharmacology. 2005 May;30(5):864-70. doi: 10.1038/sj.npp.1300615. PMID: 15562294.

  65. Crippa JA, Hallak JE, Machado-de-Sousa JP, Queiroz RH, Bergamaschi M, Chagas MH, Zuardi AW (2013): Cannabidiol for the treatment of cannabis withdrawal syndrome: a case report. J Clin Pharm Ther. 2013 Apr;38(2):162-4. doi: 10.1111/jcpt.12018. PMID: 23095052.

  66. Galaj E, Xi ZX (2020): Possible Receptor Mechanisms Underlying Cannabidiol Effects on Addictive-like Behaviors in Experimental Animals. Int J Mol Sci. 2020 Dec 24;22(1):134. doi: 10.3390/ijms22010134. PMID: 33374481; PMCID: PMC7795330. REVIEW

  67. Melis M, Pillolla G, Luchicchi A, Muntoni AL, Yasar S, Goldberg SR, Pistis M (2008): Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors. J Neurosci. 2008 Dec 17;28(51):13985-94. doi: 10.1523/JNEUROSCI.3221-08.2008. PMID: 19091987; PMCID: PMC3169176.

  68. Van Waes V, Beverley JA, Siman H, Tseng KY, Steiner H (2012): CB1 Cannabinoid Receptor Expression in the Striatum: Association with Corticostriatal Circuits and Developmental Regulation. Front Pharmacol. 2012 Mar 12;3:21. doi: 10.3389/fphar.2012.00021. PMID: 22416230; PMCID: PMC3298893.

  69. Martín AB, Fernandez-Espejo E, Ferrer B, Gorriti MA, Bilbao A, Navarro M, Rodriguez de Fonseca F, Moratalla R (2008): Expression and function of CB1 receptor in the rat striatum: localization and effects on D1 and D2 dopamine receptor-mediated motor behaviors. Neuropsychopharmacology. 2008 Jun;33(7):1667-79. doi: 10.1038/sj.npp.1301558. PMID: 17957223.

  70. Hohmann AG, Herkenham M (2000): Localization of cannabinoid CB(1) receptor mRNA in neuronal subpopulations of rat striatum: a double-label in situ hybridization study. Synapse. 2000 Jul;37(1):71-80. doi: 10.1002/(SICI)1098-2396(200007)37:1<71::AID-SYN8>3.0.CO;2-K. PMID: 10842353.

  71. Marsicano G, Lutz B (1999): Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci. 1999 Dec;11(12):4213-25. doi: 10.1046/j.1460-9568.1999.00847.x. PMID: 10594647.

  72. Fernández-Ruiz J (2009): The endocannabinoid system as a target for the treatment of motor dysfunction. Br J Pharmacol. 2009 Apr;156(7):1029-40. doi: 10.1111/j.1476-5381.2008.00088.x. PMID: 19220290; PMCID: PMC2697699. REVIEW

  73. Charalambous C, Lapka M, Havlickova T, Syslova K, Sustkova-Fiserova M (2020): Alterations in Rat Accumbens Dopamine, Endocannabinoids and GABA Content During WIN55,212-2 Treatment: The Role of Ghrelin. Int J Mol Sci. 2020 Dec 28;22(1):210. doi: 10.3390/ijms22010210. PMID: 33379212; PMCID: PMC7795825.

  74. Solinas M, Justinova Z, Goldberg SR, Tanda G (2006): Anandamide administration alone and after inhibition of fatty acid amide hydrolase (FAAH) increases dopamine levels in the nucleus accumbens shell in rats. J Neurochem. 2006 Jul;98(2):408-19. doi: 10.1111/j.1471-4159.2006.03880.x. PMID: 16805835.

  75. Tanda G, Pontieri FE, Di Chiara G (1997): Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science. 1997 Jun 27;276(5321):2048-50. doi: 10.1126/science.276.5321.2048. PMID: 9197269.

  76. Köfalvi A, Rodrigues RJ, Ledent C, Mackie K, Vizi ES, Cunha RA, Sperlágh B (2005): Involvement of cannabinoid receptors in the regulation of neurotransmitter release in the rodent striatum: a combined immunochemical and pharmacological analysis. J Neurosci. 2005 Mar 16;25(11):2874-84. doi: 10.1523/JNEUROSCI.4232-04.2005. PMID: 15772347; PMCID: PMC6725145.

  77. Pistis M, Porcu G, Melis M, Diana M, Gessa GL (2001): Effects of cannabinoids on prefrontal neuronal responses to ventral tegmental area stimulation. Eur J Neurosci. 2001 Jul;14(1):96-102. doi: 10.1046/j.0953-816x.2001.01612.x. PMID: 11488953.

  78. Diana M, Melis M, Gessa GL (1998): Increase in meso-prefrontal dopaminergic activity after stimulation of CB1 receptors by cannabinoids. Eur J Neurosci. 1998 Sep;10(9):2825-30. doi: 10.1111/j.1460-9568.1998.00292.x. PMID: 9758152.

  79. French ED, Dillon K, Wu X (1997): Cannabinoids excite dopamine neurons in the ventral tegmentum and substantia nigra. Neuroreport. 1997 Feb 10;8(3):649-52. doi: 10.1097/00001756-199702100-00014. PMID: 9106740.

  80. Riegel AC, Lupica CR (2004): Independent presynaptic and postsynaptic mechanisms regulate endocannabinoid signaling at multiple synapses in the ventral tegmental area. J Neurosci. 2004 Dec 8;24(49):11070-8. doi: 10.1523/JNEUROSCI.3695-04.2004. PMID: 15590923; PMCID: PMC4857882.

  81. Marinelli S, Di Marzo V, Florenzano F, Fezza F, Viscomi MT, van der Stelt M, Bernardi G, Molinari M, Maccarrone M, Mercuri NB (2007): N-arachidonoyl-dopamine tunes synaptic transmission onto dopaminergic neurons by activating both cannabinoid and vanilloid receptors. Neuropsychopharmacology. 2007 Feb;32(2):298-308. doi: 10.1038/sj.npp.1301118. PMID: 16760924.

  82. Tepper JM, Lee CR (2007): GABAergic control of substantia nigra dopaminergic neurons. Prog Brain Res. 2007;160:189-208. doi: 10.1016/S0079-6123(06)60011-3. PMID: 17499115. REVIEW

  83. Gerdeman GL, Fernández-Ruiz J (2008): The Endocannabinoid System in the Physiology and Pathology of the Basal Ganglia. In: Köfalvi (2008): Cannabinoids and the Brain.

  84. Melis M, Perra S, Muntoni AL, Pillolla G, Lutz B, Marsicano G, Di Marzo V, Gessa GL, Pistis M (2004): Prefrontal cortex stimulation induces 2-arachidonoyl-glycerol-mediated suppression of excitation in dopamine neurons. J Neurosci. 2004 Nov 24;24(47):10707-15. doi: 10.1523/JNEUROSCI.3502-04.2004. PMID: 15564588; PMCID: PMC6730123.

  85. Covey DP, Yocky AG (2021): Endocannabinoid Modulation of Nucleus Accumbens Microcircuitry and Terminal Dopamine Release. Front Synaptic Neurosci. 2021 Aug 23;13:734975. doi: 10.3389/fnsyn.2021.734975. PMID: 34497503; PMCID: PMC8419321. REVIEW

  86. Diana M, Melis M, Muntoni AL, Gessa GL (1998): Mesolimbic dopaminergic decline after cannabinoid withdrawal. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10269-73. doi: 10.1073/pnas.95.17.10269. PMID: 9707636; PMCID: PMC21497.

  87. Gardner EL (2005): Endocannabinoid signaling system and brain reward: emphasis on dopamine. Pharmacol Biochem Behav. 2005 Jun;81(2):263-84. doi: 10.1016/j.pbb.2005.01.032. PMID: 15936806. REVIEW

  88. Mateo Y, Johnson KA, Covey DP, Atwood BK, Wang HL, Zhang S, Gildish I, Cachope R, Bellocchio L, Guzmán M, Morales M, Cheer JF, Lovinger DM (2017): Endocannabinoid Actions on Cortical Terminals Orchestrate Local Modulation of Dopamine Release in the Nucleus Accumbens. Neuron. 2017 Dec 6;96(5):1112-1126.e5. doi: 10.1016/j.neuron.2017.11.012. PMID: 29216450; PMCID: PMC5728656.

  89. Geresu B, Onaivi E, Engidawork E (2016): Behavioral evidence for the interaction between cannabinoids and Catha edulis F. (Khat) in mice. Brain Res. 2016 Oct 1;1648(Pt A):333-338. doi: 10.1016/j.brainres.2016.08.006. PMID: 27502029.

  90. Geresu B, Canseco-Alba A, Sanabria B, Lin Z, Liu QR, Onaivi ES, Engidawork E (2019): Involvement of CB2 Receptors in the Neurobehavioral Effects of Catha Edulis (Vahl) Endl. (Khat) in Mice. Molecules. 2019 Aug 30;24(17):3164. doi: 10.3390/molecules24173164. PMID: 31480324; PMCID: PMC6749201.

  91. de Lago E, de Miguel R, Lastres-Becker I, Ramos JA, Fernández-Ruiz J (2004): Involvement of vanilloid-like receptors in the effects of anandamide on motor behavior and nigrostriatal dopaminergic activity: in vivo and in vitro evidence. Brain Res. 2004 May 8;1007(1-2):152-9. doi: 10.1016/j.brainres.2004.02.016. PMID: 15064146.

  92. Starowicz K, Nigam S, Di Marzo V (2007): Biochemistry and pharmacology of endovanilloids. Pharmacol Ther. 2007 Apr;114(1):13-33. doi: 10.1016/j.pharmthera.2007.01.005. PMID: 17349697. REVIEW

  93. Dux M, Deák É, Tassi N, Sántha P, Jancsó G (2016): Endovanilloids are potential activators of the trigeminovascular nocisensor complex. J Headache Pain. 2016;17:53. doi: 10.1186/s10194-016-0644-7. PMID: 27189587; PMCID: PMC4870586.

  94. Chen J, Paredes W, Lowinson JH, Gardner EL (1990): Delta 9-tetrahydrocannabinol enhances presynaptic dopamine efflux in medial prefrontal cortex. Eur J Pharmacol. 1990 Nov 6;190(1-2):259-62. doi: 10.1016/0014-2999(90)94136-l. PMID: 1963849.

  95. Pistis M, Ferraro L, Pira L, Flore G, Tanganelli S, Gessa GL, Devoto P (2002): Delta(9)-tetrahydrocannabinol decreases extracellular GABA and increases extracellular glutamate and dopamine levels in the rat prefrontal cortex: an in vivo microdialysis study. Brain Res. 2002 Sep 6;948(1-2):155-8. doi: 10.1016/s0006-8993(02)03055-x. PMID: 12383968.

  96. Jentsch JD, Verrico CD, Le D, Roth RH (1998): Repeated exposure to delta 9-tetrahydrocannabinol reduces prefrontal cortical dopamine metabolism in the rat. Neurosci Lett. 1998 May 1;246(3):169-72. doi: 10.1016/s0304-3940(98)00254-7. PMID: 9792619.

  97. Verrico CD, Jentsch JD, Roth RH (2003): Persistent and anatomically selective reduction in prefrontal cortical dopamine metabolism after repeated, intermittent cannabinoid administration to rats. Synapse. 2003 Jul;49(1):61-6. doi: 10.1002/syn.10215. PMID: 12710016.

  98. Bossong, van Berckel, Boellaard, Zuurman, Schuit, Windhorst, van Gerven, Ramsey, Lammertsma, Kahn (2009): Delta 9-tetrahydrocannabinol induces dopamine release in the human striatum.; Neuropsychopharmacology. 2009 Feb;34(3):759-66. doi: 10.1038/npp.2008.138. mwNw; 47

  99. Bloomfield MA, Morgan CJ, Egerton A, Kapur S, Curran HV, Howes OD (2014): Dopaminergic function in cannabis users and its relationship to cannabis-induced psychotic symptoms. Biol Psychiatry. 2014 Mar 15;75(6):470-8. doi: 10.1016/j.biopsych.2013.05.027. PMID: 23820822.

  100. Di Marzo V, Berrendero F, Bisogno T, González S, Cavaliere P, Romero J, Cebeira M, Ramos JA, Fernández-Ruiz JJ (2000): Enhancement of anandamide formation in the limbic forebrain and reduction of endocannabinoid contents in the striatum of delta9-tetrahydrocannabinol-tolerant rats. J Neurochem. 2000 Apr;74(4):1627-35. doi: 10.1046/j.1471-4159.2000.0741627.x. PMID: 10737621.

  101. Dudok B, Barna L, Ledri M, Szabó SI, Szabadits E, Pintér B, Woodhams SG, Henstridge CM, Balla GY, Nyilas R, Varga C, Lee SH, Matolcsi M, Cervenak J, Kacskovics I, Watanabe M, Sagheddu C, Melis M, Pistis M, Soltesz I, Katona I (2015): Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling. Nat Neurosci. 2015 Jan;18(1):75-86. doi: 10.1038/nn.3892. PMID: 25485758; PMCID: PMC4281300.

  102. González S, Fernández-Ruiz J, Di Marzo V, Hernández M, Arévalo C, Nicanor C, Cascio MG, Ambrosio E, Ramos JA (2004): Behavioral and molecular changes elicited by acute administration of SR141716 to Delta9-tetrahydrocannabinol-tolerant rats: an experimental model of cannabinoid abstinence. Drug Alcohol Depend. 2004 May 10;74(2):159-70. doi: 10.1016/j.drugalcdep.2003.12.011. PMID: 15099659.

  103. Tzavara ET, Davis RJ, Perry KW, Li X, Salhoff C, Bymaster FP, Witkin JM, Nomikos GG (2003): The CB1 receptor antagonist SR141716A selectively increases monoaminergic neurotransmission in the medial prefrontal cortex: implications for therapeutic actions. Br J Pharmacol. 2003 Feb;138(4):544-53. doi: 10.1038/sj.bjp.0705100. PMID: 12598408; PMCID: PMC1573706.

  104. Cheer JF, Kendall DA, Mason R, Marsden CA (2003): Differential cannabinoid-induced electrophysiological effects in rat ventral tegmentum. Neuropharmacology. 2003 Apr;44(5):633-41. doi: 10.1016/s0028-3908(03)00029-7. PMID: 12668049.

  105. Miller AS, Walker JM (1995): Effects of a cannabinoid on spontaneous and evoked neuronal activity in the substantia nigra pars reticulata. Eur J Pharmacol. 1995 Jun 12;279(2-3):179-85. doi: 10.1016/0014-2999(95)00151-a. PMID: 7556399.

  106. Cheer JF, Marsden CA, Kendall DA, Mason R (2000): Lack of response suppression follows repeated ventral tegmental cannabinoid administration: an in vitro electrophysiological study. Neuroscience. 2000;99(4):661-7. doi: 10.1016/s0306-4522(00)00241-4. PMID: 10974429.

  107. Sperlágh B, Windisch K, Andó RD, Sylvester Vizi E (2009): Neurochemical evidence that stimulation of CB1 cannabinoid receptors on GABAergic nerve terminals activates the dopaminergic reward system by increasing dopamine release in the rat nucleus accumbens. Neurochem Int. 2009 Jun;54(7):452-7. doi: 10.1016/j.neuint.2009.01.017. PMID: 19428788.

  108. Cheer JF, Wassum KM, Heien ML, Phillips PE, Wightman RM (2004): Cannabinoids enhance subsecond dopamine release in the nucleus accumbens of awake rats. J Neurosci. 2004 May 5;24(18):4393-400. doi: 10.1523/JNEUROSCI.0529-04.2004. PMID: 15128853; PMCID: PMC6729440.

  109. Manzoni OJ, Bockaert J (2001): Cannabinoids inhibit GABAergic synaptic transmission in mice nucleus accumbens. Eur J Pharmacol. 2001 Jan 26;412(2):R3-5. doi: 10.1016/s0014-2999(01)00723-3. PMID: 11165232.

  110. Alvarez-Jaimes L, Polis I, Parsons LH (2008): Attenuation of cue-induced heroin-seeking behavior by cannabinoid CB1 antagonist infusions into the nucleus accumbens core and prefrontal cortex, but not basolateral amygdala. Neuropsychopharmacology. 2008 Sep;33(10):2483-93. doi: 10.1038/sj.npp.1301630. PMID: 18059440.

  111. Szabo B, Siemes S, Wallmichrath I (2002): Inhibition of GABAergic neurotransmission in the ventral tegmental area by cannabinoids. Eur J Neurosci. 2002 Jun;15(12):2057-61. doi: 10.1046/j.1460-9568.2002.02041.x. PMID: 12099913.

  112. Wallmichrath I, Szabo B (2002): Analysis of the effect of cannabinoids on GABAergic neurotransmission in the substantia nigra pars reticulata. Naunyn Schmiedebergs Arch Pharmacol. 2002 Apr;365(4):326-34. doi: 10.1007/s00210-001-0520-z. PMID: 11919658.

  113. Tung LW, Lu GL, Lee YH, Yu L, Lee HJ, Leishman E, Bradshaw H, Hwang LL, Hung MS, Mackie K, Zimmer A, Chiou LC (2016): Orexins contribute to restraint stress-induced cocaine relapse by endocannabinoid-mediated disinhibition of dopaminergic neurons. Nat Commun. 2016 Jul 22;7:12199. doi: 10.1038/ncomms12199. PMID: 27448020; PMCID: PMC4961842.

  114. Chou YH, Hor CC, Lee MT, Lee HJ, Guerrini R, Calo G, Chiou LC (2021): Stress induces reinstatement of extinguished cocaine conditioned place preference by a sequential signaling via neuropeptide S, orexin, and endocannabinoid. Addict Biol. 2021 May;26(3):e12971. doi: 10.1111/adb.12971. PMID: 33078457.

  115. Labouèbe G, Liu S, Dias C, Zou H, Wong JC, Karunakaran S, Clee SM, Phillips AG, Boutrel B, Borgland SL (2013): Insulin induces long-term depression of ventral tegmental area dopamine neurons via endocannabinoids. Nat Neurosci. 2013 Mar;16(3):300-8. doi: 10.1038/nn.3321. PMID: 23354329; PMCID: PMC4072656.

  116. Kortleven C, Bruneau LC, Trudeau LE (2012): Neurotensin inhibits glutamate-mediated synaptic inputs onto ventral tegmental area dopamine neurons through the release of the endocannabinoid 2-AG. Neuropharmacology. 2012 Nov;63(6):983-91. doi: 10.1016/j.neuropharm.2012.07.037. PMID: 22884466.

  117. Tschumi CW, Beckstead MJ (2019): Diverse actions of the modulatory peptide neurotensin on central synaptic transmission. Eur J Neurosci. 2019 Mar;49(6):784-793. doi: 10.1111/ejn.13858. PMID: 29405480; PMCID: PMC6078827. REVIEW

  118. Julian MD, Martin AB, Cuellar B, Rodriguez De Fonseca F, Navarro M, Moratalla R, Garcia-Segura LM (2003): Neuroanatomical relationship between type 1 cannabinoid receptors and dopaminergic systems in the rat basal ganglia. Neuroscience. 2003;119(1):309-18. doi: 10.1016/s0306-4522(03)00070-8. PMID: 12763090.

  119. Han X, Liang Y, Hempel B, Jordan CJ, Shen H, Bi GH, Li J, Xi ZX (2023): Cannabinoid CB1 Receptors Are Expressed in a Subset of Dopamine Neurons and Underlie Cannabinoid-Induced Aversion, Hypoactivity, and Anxiolytic Effects in Mice. J Neurosci. 2023 Jan 18;43(3):373-385. doi: 10.1523/JNEUROSCI.1493-22.2022. PMID: 36517243; PMCID: PMC9864584.

  120. Lau T, Schloss P (2008): The cannabinoid CB1 receptor is expressed on serotonergic and dopaminergic neurons. Eur J Pharmacol. 2008 Jan 14;578(2-3):137-41. doi: 10.1016/j.ejphar.2007.09.022. PMID: 17931621.

  121. Terzian AL, Drago F, Wotjak CT, Micale V (2011): The Dopamine and Cannabinoid Interaction in the Modulation of Emotions and Cognition: Assessing the Role of Cannabinoid CB1 Receptor in Neurons Expressing Dopamine D1 Receptors. Front Behav Neurosci. 2011 Aug 17;5:49. doi: 10.3389/fnbeh.2011.00049. PMID: 21887137; PMCID: PMC3156975.

  122. Zhao S, Gu ZL, Yue YN, Zhang X, Dong Y (2024): Cannabinoids and monoaminergic system: implications for learning and memory. Front Neurosci. 2024 Aug 14;18:1425532. doi: 10.3389/fnins.2024.1425532. PMID: 39206116; PMCID: PMC11349573. REVIEW

  123. Liu QR, Canseco-Alba A, Liang Y, Ishiguro H, Onaivi ES (2020): Low Basal CB2R in Dopamine Neurons and Microglia Influences Cannabinoid Tetrad Effects. Int J Mol Sci. 2020 Dec 21;21(24):9763. doi: 10.3390/ijms21249763. PMID: 33371336; PMCID: PMC7767340.

  124. Zhang HY, Bi GH, Li X, Li J, Qu H, Zhang SJ, Li CY, Onaivi ES, Gardner EL, Xi ZX, Liu QR (2015): Species differences in cannabinoid receptor 2 and receptor responses to cocaine self-administration in mice and rats. Neuropsychopharmacology. 2015 Mar;40(4):1037-51. doi: 10.1038/npp.2014.297. PMID: 25374096; PMCID: PMC4330519.

  125. Lupica CR, Riegel AC (2005): Endocannabinoid release from midbrain dopamine neurons: a potential substrate for cannabinoid receptor antagonist treatment of addiction. Neuropharmacology. 2005 Jun;48(8):1105-16. doi: 10.1016/j.neuropharm.2005.03.016. PMID: 15878779. REVIEW

  126. Cachope, Mateo, Mathur, Irving, Wang, Morales, Lovinger, Cheer (2012): Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing. Cell Rep. 2012 Jul 26;2(1):33-41. doi: 10.1016/j.celrep.2012.05.011. PMID: 22840394; PMCID: PMC3408582.

  127. Threlfell, Lalic, Platt, Jennings, Deisseroth, Cragg (2012): Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron. 2012 Jul 12;75(1):58-64. doi: 10.1016/j.neuron.2012.04.038. PMID: 22794260.

  128. Pandolfo P, Silveirinha V, dos Santos-Rodrigues A, Venance L, Ledent C, Takahashi RN, Cunha RA, Köfalvi A (2011): Cannabinoids inhibit the synaptic uptake of adenosine and dopamine in the rat and mouse striatum. Eur J Pharmacol. 2011 Mar 25;655(1-3):38-45. doi: 10.1016/j.ejphar.2011.01.013. PMID: 21266173.

  129. Oz M, Jaligam V, Galadari S, Petroianu G, Shuba YM, Shippenberg TS (2010): The endogenous cannabinoid, anandamide, inhibits dopamine transporter function by a receptor-independent mechanism. J Neurochem. 2010 Mar;112(6):1454-64. doi: 10.1111/j.1471-4159.2009.06557.x. PMID: 20050977; PMCID: PMC2951136.

  130. Centonze D, Bari M, Di Michele B, Rossi S, Gasperi V, Pasini A, Battista N, Bernardi G, Curatolo P, Maccarrone M (2009): Altered anandamide degradation in attention-deficit/hyperactivity disorder. Neurology. 2009 Apr 28;72(17):1526-7. doi: 10.1212/WNL.0b013e3181a2e8f6. PMID: 19398708.

  131. Chen N, Appell M, Berfield JL, Reith ME (2003): Inhibition by arachidonic acid and other fatty acids of dopamine uptake at the human dopamine transporter. Eur J Pharmacol. 2003 Oct 8;478(2-3):89-95. doi: 10.1016/j.ejphar.2003.08.045. PMID: 14575792.

  132. Giuffrida A, Parsons LH, Kerr TM, Rodríguez de Fonseca F, Navarro M, Piomelli D (1999): Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat Neurosci. 1999 Apr;2(4):358-63. doi: 10.1038/7268. PMID: 10204543.

  133. Tzavara ET, Li DL, Moutsimilli L, Bisogno T, Di Marzo V, Phebus LA, Nomikos GG, Giros B (2006): Endocannabinoids activate transient receptor potential vanilloid 1 receptors to reduce hyperdopaminergia-related hyperactivity: therapeutic implications. Biol Psychiatry. 2006 Mar 15;59(6):508-15. doi: 10.1016/j.biopsych.2005.08.019. PMID: 16199010.

  134. Navarro HA, Howard JL, Pollard GT, Carroll FI (2009): Positive allosteric modulation of the human cannabinoid (CB) receptor by RTI-371, a selective inhibitor of the dopamine transporter. Br J Pharmacol. 2009 Apr;156(7):1178-84. doi: 10.1111/j.1476-5381.2009.00124.x. PMID: 19226282; PMCID: PMC2697692.

  135. Ma Z, Gao F, Larsen B, Gao M, Luo Z, Chen D, Ma X, Qiu S, Zhou Y, Xie J, Xi ZX, Wu J (2019): Mechanisms of cannabinoid CB2 receptor-mediated reduction of dopamine neuronal excitability in mouse ventral tegmental area. EBioMedicine. 2019 Apr;42:225-237. doi: 10.1016/j.ebiom.2019.03.040. PMID: 30952618; PMCID: PMC6491419.

  136. Zhang HY, Gao M, Shen H, Bi GH, Yang HJ, Liu QR, Wu J, Gardner EL, Bonci A, Xi ZX (2017): Expression of functional cannabinoid CB2 receptor in VTA dopamine neurons in rats. Addict Biol. 2017 May;22(3):752-765. doi: 10.1111/adb.12367. PMID: 26833913; PMCID: PMC4969232.

  137. Zhang HY, Gao M, Liu QR, Bi GH, Li X, Yang HJ, Gardner EL, Wu J, Xi ZX (2014): Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):E5007-15. doi: 10.1073/pnas.1413210111. PMID: 25368177; PMCID: PMC4246322.

  138. Liu M, Pan D, Wang M, Deng H, Ma Z (2024): JWH133 attenuates behavior deficits and iron accumulation in 6-OHDA-induced Parkinson’s disease model rats. J Neurophysiol. 2024 Sep 1;132(3):733-743. doi: 10.1152/jn.00137.2024. PMID: 39015077.

  139. Cheer JF, Kendall DA, Marsden CA (2000): Cannabinoid receptors and reward in the rat: a conditioned place preference study. Psychopharmacology (Berl). 2000 Jul;151(1):25-30. doi: 10.1007/s002130000481. PMID: 10958113.

  140. Wang W, Dever D, Lowe J, Storey GP, Bhansali A, Eck EK, Nitulescu I, Weimer J, Bamford NS (2012): Regulation of prefrontal excitatory neurotransmission by dopamine in the nucleus accumbens core. J Physiol. 2012 Aug 15;590(16):3743-69. doi: 10.1113/jphysiol.2012.235200. PMID: 22586226; PMCID: PMC3476631.

  141. Perra S, Pillolla G, Melis M, Muntoni AL, Gessa GL, Pistis M (2005): Involvement of the endogenous cannabinoid system in the effects of alcohol in the mesolimbic reward circuit: electrophysiological evidence in vivo. Psychopharmacology (Berl). 2005 Dec;183(3):368-77. doi: 10.1007/s00213-005-0195-0. PMID: 16228194.

  142. Gessa GL, Melis M, Muntoni AL, Diana M (1998): Cannabinoids activate mesolimbic dopamine neurons by an action on cannabinoid CB1 receptors. Eur J Pharmacol. 1998 Jan 2;341(1):39-44. doi: 10.1016/s0014-2999(97)01442-8. PMID: 9489854.

  143. Wenzel JM, Cheer JF (2014): Endocannabinoid-dependent modulation of phasic dopamine signaling encodes external and internal reward-predictive cues. Front Psychiatry. 2014 Sep 1;5:118. doi: 10.3389/fpsyt.2014.00118. PMID: 25225488; PMCID: PMC4150350. REVIEW

  144. Morikawa H, Paladini CA (2011): Dynamic regulation of midbrain dopamine neuron activity: intrinsic, synaptic, and plasticity mechanisms. Neuroscience. 2011 Dec 15;198:95-111. doi: 10.1016/j.neuroscience.2011.08.023. PMID: 21872647; PMCID: PMC3221882. REVIEW

  145. Wang H, Lupica CR (2014): Release of endogenous cannabinoids from ventral tegmental area dopamine neurons and the modulation of synaptic processes. Prog Neuropsychopharmacol Biol Psychiatry. 2014 Jul 3;52:24-7. doi: 10.1016/j.pnpbp.2014.01.019. PMID: 24495779; PMCID: PMC4018213. REVIEW

  146. Melis M, Pistis M (2012): Hub and switches: endocannabinoid signalling in midbrain dopamine neurons. Philos Trans R Soc Lond B Biol Sci. 2012 Dec 5;367(1607):3276-85. doi: 10.1098/rstb.2011.0383. PMID: 23108546; PMCID: PMC3481525. REVIEW

  147. Iversen L (2003): Cannabis and the brain. Brain. 2003 Jun;126(Pt 6):1252-70. doi: 10.1093/brain/awg143. PMID: 12764049. REVIEW

  148. Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M (2009): Endocannabinoid-mediated control of synaptic transmission. Physiol Rev. 2009 Jan;89(1):309-80. doi: 10.1152/physrev.00019.2008. PMID: 19126760. REVIEW

  149. Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991): Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci. 1991 Feb;11(2):563-83. doi: 10.1523/JNEUROSCI.11-02-00563.1991. PMID: 1992016; PMCID: PMC6575215.

  150. Lindsey KP, Glaser ST, Gatley SJ (2005): Imaging of the brain cannabinoid system. Handb Exp Pharmacol. 2005;(168):425-43. doi: 10.1007/3-540-26573-2_14. PMID: 16596783. REVIEW

  151. Bisogno T, Berrendero F, Ambrosino G, Cebeira M, Ramos JA, Fernandez-Ruiz JJ, Di Marzo V (1999): Brain regional distribution of endocannabinoids: implications for their biosynthesis and biological function. Biochem Biophys Res Commun. 1999 Mar 16;256(2):377-80. doi: 10.1006/bbrc.1999.0254. PMID: 10079192.

  152. Fortin DA, Levine ES (2007): Differential effects of endocannabinoids on glutamatergic and GABAergic inputs to layer 5 pyramidal neurons. Cereb Cortex. 2007 Jan;17(1):163-74. doi: 10.1093/cercor/bhj133. PMID: 16467564.

  153. Méndez P, Bacci A (2011): Assortment of GABAergic plasticity in the cortical interneuron melting pot. Neural Plast. 2011;2011:976856. doi: 10.1155/2011/976856. PMID: 21785736; PMCID: PMC3139185. REVIEW

  154. Chevaleyre V, Takahashi KA, Castillo PE (2006): Endocannabinoid-mediated synaptic plasticity in the CNS. Annu Rev Neurosci. 2006;29:37-76. doi: 10.1146/annurev.neuro.29.051605.112834. PMID: 16776579. REVIEW

  155. Heifets BD, Castillo PE (2009): Endocannabinoid signaling and long-term synaptic plasticity. Annu Rev Physiol. 2009;71:283-306. doi: 10.1146/annurev.physiol.010908.163149. PMID: 19575681; PMCID: PMC4454279. REVIEW

  156. Chevaleyre V, Castillo PE (2003): Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron. 2003 May 8;38(3):461-72. doi: 10.1016/s0896-6273(03)00235-6. Erratum in: Neuron. 2003 Jun 19;38(6):997. PMID: 12741992.

  157. Heifets BD, Chevaleyre V, Castillo PE (2008): Interneuron activity controls endocannabinoid-mediated presynaptic plasticity through calcineurin. Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10250-5. doi: 10.1073/pnas.0711880105. PMID: 18632563; PMCID: PMC2481322.

  158. Chevaleyre V, Heifets BD, Kaeser PS, Südhof TC, Castillo PE (2007): Endocannabinoid-mediated long-term plasticity requires cAMP/PKA signaling and RIM1alpha. Neuron. 2007 Jun 7;54(5):801-12. doi: 10.1016/j.neuron.2007.05.020. Erratum in: Neuron. 2007 Jul 5;55(1):169. Purpura, Dominick P [removed]. PMID: 17553427; PMCID: PMC2001295.

  159. Lupica CR, Riegel AC, Hoffman AF (2004): Marijuana and cannabinoid regulation of brain reward circuits. Br J Pharmacol. 2004 Sep;143(2):227-34. doi: 10.1038/sj.bjp.0705931. PMID: 15313883; PMCID: PMC1575338. REVIEW

  160. Sugita S, Johnson SW, North RA (1992): Synaptic inputs to GABAA and GABAB receptors originate from discrete afferent neurons. Neurosci Lett. 1992 Jan 6;134(2):207-11. doi: 10.1016/0304-3940(92)90518-c. PMID: 1350333.

  161. Lafourcade CA, Alger BE (2008): Distinctions among GABAA and GABAB responses revealed by calcium channel antagonists, cannabinoids, opioids, and synaptic plasticity in rat hippocampus. Psychopharmacology (Berl). 2008 Jul;198(4):539-49. doi: 10.1007/s00213-007-1040-4. PMID: 18097653; PMCID: PMC2906116.

  162. Xia Y, Driscoll JR, Wilbrecht L, Margolis EB, Fields HL, Hjelmstad GO (2011): Nucleus accumbens medium spiny neurons target non-dopaminergic neurons in the ventral tegmental area. J Neurosci. 2011 May 25;31(21):7811-6. doi: 10.1523/JNEUROSCI.1504-11.2011. PMID: 21613494; PMCID: PMC6633124.

  163. Winters BD, Krüger JM, Huang X, Gallaher ZR, Ishikawa M, Czaja K, Krueger JM, Huang YH, Schlüter OM, Dong Y (2012): Cannabinoid receptor 1-expressing neurons in the nucleus accumbens. Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):E2717-25. doi: 10.1073/pnas.1206303109. PMID: 23012412; PMCID: PMC3479600.

  164. Wright WJ, Schlüter OM, Dong Y (2017): A Feedforward Inhibitory Circuit Mediated by CB1-Expressing Fast-Spiking Interneurons in the Nucleus Accumbens. Neuropsychopharmacology. 2017 Apr;42(5):1146-1156. doi: 10.1038/npp.2016.275. PMID: 27929113; PMCID: PMC5506784.

  165. Creed M, Ntamati NR, Chandra R, Lobo MK, Lüscher C (2016): Convergence of Reinforcing and Anhedonic Cocaine Effects in the Ventral Pallidum. Neuron. 2016 Oct 5;92(1):214-226. doi: 10.1016/j.neuron.2016.09.001. PMID: 27667004; PMCID: PMC8480039.

  166. Aguilar DD, Chen L, Lodge DJ (2014): Increasing endocannabinoid levels in the ventral pallidum restore aberrant dopamine neuron activity in the subchronic PCP rodent model of schizophrenia. Int J Neuropsychopharmacol. 2014 Oct 31;18(1):pyu035. doi: 10.1093/ijnp/pyu035. Erratum in: Int J Neuropsychopharmacol. 2016 Apr 27;19(10):pyw031. doi: 10.1093/ijnp/pyw031. PMID: 25539511; PMCID: PMC4332795.

  167. Jhou TC, Fields HL, Baxter MG, Saper CB, Holland PC (2009): The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron. 2009 Mar 12;61(5):786-800. doi: 10.1016/j.neuron.2009.02.001. PMID: 19285474; PMCID: PMC2841475.

  168. Leafscience (2018): Marijuana and Dopamine: What’s The Link?

  169. Friend, Weed, Sandoval, Nufer, Ostlund, Edwards (2017): CB1-Dependent Long-Term Depression in Ventral Tegmental Area GABA Neurons: A Novel Target for Marijuana. J Neurosci. 2017 Nov 8;37(45):10943-10954. doi: 10.1523/JNEUROSCI.0190-17.2017.

  170. Justinová, Ferré, Redhi, Mascia, Stroik, Quarta, Yasar, Müller, Franco, Goldberg (2011): Reinforcing and neurochemical effects of cannabinoid CB1 receptor agonists, but not cocaine, are altered by an adenosine A2A receptor antagonist. Addict Biol. 2011 Jul;16(3):405-15. doi: 10.1111/j.1369-1600.2010.00258.x. PMID: 21054689; PMCID: PMC3115444.

  171. Masserano JM, Karoum F, Wyatt RJ (1999): SR 141716A, a CB1 cannabinoid receptor antagonist, potentiates the locomotor stimulant effects of amphetamine and apomorphine. Behav Pharmacol. 1999 Jul;10(4):429-32. doi: 10.1097/00008877-199907000-00010. PMID: 10780811.

  172. Bloomfield MA, Ashok AH, Volkow ND, Howes OD (2016): The effects of Δ9-tetrahydrocannabinol on the dopamine system. Nature. 2016 Nov 17;539(7629):369-377. doi: 10.1038/nature20153. PMID: 27853201; PMCID: PMC5123717. REVIEW

  173. Hayase T, Yamamoto Y, Yamamoto K (2001): Protective effects of cannabinoid receptor agonists against cocaine and other convulsant-induced toxic behavioural symptoms. J Pharm Pharmacol. 2001 Nov;53(11):1525-32. doi: 10.1211/0022357011777891. PMID: 11732755.

  174. Adriani W, Laviola G (2004): Windows of vulnerability to psychopathology and therapeutic strategy in the adolescent rodent model. Behav Pharmacol. 2004 Sep;15(5-6):341-52. doi: 10.1097/00008877-200409000-00005. PMID: 15343057. REVIEW

  175. Wallén-Mackenzie A, Nordenankar K, Fejgin K, Lagerström MC, Emilsson L, Fredriksson R, Wass C, Andersson D, Egecioglu E, Andersson M, Strandberg J, Lindhe O, Schiöth HB, Chergui K, Hanse E, Långström B, Fredriksson A, Svensson L, Roman E, Kullander K (2009): Restricted cortical and amygdaloid removal of vesicular glutamate transporter 2 in preadolescent mice impacts dopaminergic activity and neuronal circuitry of higher brain function. J Neurosci. 2009 Feb 18;29(7):2238-51. doi: 10.1523/JNEUROSCI.5851-08.2009. PMID: 19228977; PMCID: PMC6666332.

  176. Smith AD, Bolam JP (1990): The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci. 1990 Jul;13(7):259-65. doi: 10.1016/0166-2236(90)90106-k. PMID: 1695400. REVIEW

  177. Robbe D, Alonso G, Duchamp F, Bockaert J, Manzoni OJ (2001): Localization and mechanisms of action of cannabinoid receptors at the glutamatergic synapses of the mouse nucleus accumbens. J Neurosci. 2001 Jan 1;21(1):109-16. doi: 10.1523/JNEUROSCI.21-01-00109.2001. PMID: 11150326; PMCID: PMC6762427.

  178. Bergeron S, Rompré PP (2013): Blockade of ventral midbrain NMDA receptors enhances brain stimulation reward: a preferential role for GluN2A subunits. Eur Neuropsychopharmacol. 2013 Nov;23(11):1623-35. doi: 10.1016/j.euroneuro.2012.12.005. PMID: 23352316.}}) NMDA-Rezeptoren in GABA-Neuronen{{Hernandez G, Khodami-Pour A, Lévesque D, Rompré PP (2015): Reduction in Ventral Midbrain NMDA Receptors Reveals Two Opposite Modulatory Roles for Glutamate on Reward. Neuropsychopharmacology. 2015 Jun;40(7):1682-91. doi: 10.1038/npp.2015.14. PMID: 25578795; PMCID: PMC4915250.

  179. Hernandez G, Khodami-Pour A, Lévesque D, Rompré PP (2015): Reduction in Ventral Midbrain NMDA Receptors Reveals Two Opposite Modulatory Roles for Glutamate on Reward. Neuropsychopharmacology. 2015 Jun;40(7):1682-91. doi: 10.1038/npp.2015.14. PMID: 25578795; PMCID: PMC4915250.

  180. Zweifel LS, Parker JG, Lobb CJ, Rainwater A, Wall VZ, Fadok JP, Darvas M, Kim MJ, Mizumori SJ, Paladini CA, Phillips PE, Palmiter RD (2009): Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proc Natl Acad Sci U S A. 2009 May 5;106(18):7281-8. doi: 10.1073/pnas.0813415106. PMID: 19342487; PMCID: PMC2678650.

  181. Overton PG, Clark D (1997): Burst firing in midbrain dopaminergic neurons. Brain Res Brain Res Rev. 1997 Dec;25(3):312-34. doi: 10.1016/s0165-0173(97)00039-8. PMID: 9495561. REVIEW

  182. Lobb CJ, Wilson CJ, Paladini CA (2010): A dynamic role for GABA receptors on the firing pattern of midbrain dopaminergic neurons. J Neurophysiol. 2010 Jul;104(1):403-13. doi: 10.1152/jn.00204.2010. PMID: 20445035; PMCID: PMC2904231.

  183. Calabresi P, Picconi B, Tozzi A, Di Filippo M (2007): Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci. 2007 May;30(5):211-9. doi: 10.1016/j.tins.2007.03.001. PMID: 17367873. REVIEW

  184. Dong Y, Nasif FJ, Tsui JJ, Ju WY, Cooper DC, Hu XT, Malenka RC, White FJ (2005): Cocaine-induced plasticity of intrinsic membrane properties in prefrontal cortex pyramidal neurons: adaptations in potassium currents. J Neurosci. 2005 Jan 26;25(4):936-40. doi: 10.1523/JNEUROSCI.4715-04.2005. PMID: 15673674; PMCID: PMC6725625.

  185. Moghaddam B, Homayoun H (2008): Divergent plasticity of prefrontal cortex networks. Neuropsychopharmacology. 2008 Jan;33(1):42-55. doi: 10.1038/sj.npp.1301554. PMID: 17912252; PMCID: PMC2910407. REVIEW

  186. Svensson TH (2000): Dysfunctional brain dopamine systems induced by psychotomimetic NMDA-receptor antagonists and the effects of antipsychotic drugs. Brain Res Brain Res Rev. 2000 Mar;31(2-3):320-9. doi: 10.1016/s0165-0173(99)00048-x. PMID: 10719159. REVIEW

  187. Shen W, Flajolet M, Greengard P, Surmeier DJ (2008): Dichotomous dopaminergic control of striatal synaptic plasticity. Science. 2008 Aug 8;321(5890):848-51. doi: 10.1126/science.1160575. PMID: 18687967; PMCID: PMC2833421.

  188. Reynolds JN, Hyland BI, Wickens JR (2001): A cellular mechanism of reward-related learning. Nature. 2001 Sep 6;413(6851):67-70. doi: 10.1038/35092560. PMID: 11544526.

  189. Patel S, Rademacher DJ, Hillard CJ (2003): Differential regulation of the endocannabinoids anandamide and 2-arachidonylglycerol within the limbic forebrain by dopamine receptor activity. J Pharmacol Exp Ther. 2003 Sep;306(3):880-8. doi: 10.1124/jpet.103.054270. PMID: 12808005.

  190. Kreitzer AC, Malenka RC (2007): Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature. 2007 Feb 8;445(7128):643-7. doi: 10.1038/nature05506. PMID: 17287809.

  191. Gerdeman GL, Ronesi J, Lovinger DM (2002): Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat Neurosci. 2002 May;5(5):446-51. doi: 10.1038/nn832. PMID: 11976704.

  192. Liu XY, Chu XP, Mao LM, Wang M, Lan HX, Li MH, Zhang GC, Parelkar NK, Fibuch EE, Haines M, Neve KA, Liu F, Xiong ZG, Wang JQ (2006): Modulation of D2R-NR2B interactions in response to cocaine. Neuron. 2006 Dec 7;52(5):897-909. doi: 10.1016/j.neuron.2006.10.011. PMID: 17145509.

  193. André VM, Cepeda C, Cummings DM, Jocoy EL, Fisher YE, William Yang X, Levine MS (2010): Dopamine modulation of excitatory currents in the striatum is dictated by the expression of D1 or D2 receptors and modified by endocannabinoids. Eur J Neurosci. 2010 Jan;31(1):14-28. doi: 10.1111/j.1460-9568.2009.07047.x. PMID: 20092552.

  194. Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007): D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 2007 May;30(5):228-35. doi: 10.1016/j.tins.2007.03.008. PMID: 17408758. REVIEW

  195. Centonze D, Battista N, Rossi S, Mercuri NB, Finazzi-Agrò A, Bernardi G, Calabresi P, Maccarrone M (2004): A critical interaction between dopamine D2 receptors and endocannabinoids mediates the effects of cocaine on striatal gabaergic Transmission. Neuropsychopharmacology. 2004 Aug;29(8):1488-97. doi: 10.1038/sj.npp.1300458. PMID: 15100701.

  196. Grueter BA, Brasnjo G, Malenka RC (2010): Postsynaptic TRPV1 triggers cell type-specific long-term depression in the nucleus accumbens. Nat Neurosci. 2010 Dec;13(12):1519-25. doi: 10.1038/nn.2685. PMID: 21076424; PMCID: PMC3092590.

  197. Gerdeman G, Lovinger DM (2001): CB1 cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum. J Neurophysiol. 2001 Jan;85(1):468-71. doi: 10.1152/jn.2001.85.1.468. PMID: 11152748.

  198. Tanganelli S, Sandager Nielsen K, Ferraro L, Antonelli T, Kehr J, Franco R, Ferré S, Agnati LF, Fuxe K, Scheel-Krüger J (2004): Striatal plasticity at the network level. Focus on adenosine A2A and D2 interactions in models of Parkinson’s Disease. Parkinsonism Relat Disord. 2004 Jul;10(5):273-80. doi: 10.1016/j.parkreldis.2004.02.015. PMID: 15196505.

  199. Fitzgerald ML, Shobin E, Pickel VM (2012): Cannabinoid modulation of the dopaminergic circuitry: implications for limbic and striatal output. Prog Neuropsychopharmacol Biol Psychiatry. 2012 Jul 2;38(1):21-9. doi: 10.1016/j.pnpbp.2011.12.004. PMID: 22265889; PMCID: PMC3389172. REVIEW

  200. Musella A, De Chiara V, Rossi S, Prosperetti C, Bernardi G, Maccarrone M, Centonze D (2009): TRPV1 channels facilitate glutamate transmission in the striatum. Mol Cell Neurosci. 2009 Jan;40(1):89-97. doi: 10.1016/j.mcn.2008.09.001. PMID: 18930149.

  201. Tseng KY, O’Donnell P (2004): Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci. 2004 Jun 2;24(22):5131-9. doi: 10.1523/JNEUROSCI.1021-04.2004. PMID: 15175382; PMCID: PMC6729185.

  202. Ali AB (2009): Presynaptic cell dependent modulation of inhibition in cortical regions. Curr Neuropharmacol. 2009 Jun;7(2):125-31. doi: 10.2174/157015909788848875. PMID: 19949571; PMCID: PMC2730004.

  203. Galarreta M, Erdélyi F, Szabó G, Hestrin S (2008): Cannabinoid sensitivity and synaptic properties of 2 GABAergic networks in the neocortex. Cereb Cortex. 2008 Oct;18(10):2296-305. doi: 10.1093/cercor/bhm253. PMID: 18203691; PMCID: PMC2536700.

  204. Tóth A, Boczán J, Kedei N, Lizanecz E, Bagi Z, Papp Z, Edes I, Csiba L, Blumberg PM (2005): Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. Brain Res Mol Brain Res. 2005 Apr 27;135(1-2):162-8. doi: 10.1016/j.molbrainres.2004.12.003. PMID: 15857679.

  205. Bennion D, Jensen T, Walther C, Hamblin J, Wallmann A, Couch J, Blickenstaff J, Castle M, Dean L, Beckstead S, Merrill C, Muir C, St Pierre T, Williams B, Daniel S, Edwards JG (2011): Transient receptor potential vanilloid 1 agonists modulate hippocampal CA1 LTP via the GABAergic system. Neuropharmacology. 2011 Sep;61(4):730-8. doi: 10.1016/j.neuropharm.2011.05.018. PMID: 21645527.

  206. Bari M, Bonifacino T, Milanese M, Spagnuolo P, Zappettini S, Battista N, Giribaldi F, Usai C, Bonanno G, Maccarrone M (2011): The endocannabinoid system in rat gliosomes and its role in the modulation of glutamate release. Cell Mol Life Sci. 2011 Mar;68(5):833-45. doi: 10.1007/s00018-010-0494-4. PMID: 20711816; PMCID: PMC11114970.

  207. Doig NM, Moss J, Bolam JP (2010): Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J Neurosci. 2010 Nov 3;30(44):14610-8. doi: 10.1523/JNEUROSCI.1623-10.2010. PMID: 21048118; PMCID: PMC6633626.

  208. Berendse HW, Groenewegen HJ (1990): Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum. J Comp Neurol. 1990 Sep 8;299(2):187-228. doi: 10.1002/cne.902990206. PMID: 2172326.

  209. Fremeau RT Jr, Kam K, Qureshi T, Johnson J, Copenhagen DR, Storm-Mathisen J, Chaudhry FA, Nicoll RA, Edwards RH (2004): Vesicular glutamate transporters 1 and 2 target to functionally distinct synaptic release sites. Science. 2004 Jun 18;304(5678):1815-9. doi: 10.1126/science.1097468. PMID: 15118123.

  210. Paquet M, Smith Y (2003): Group I metabotropic glutamate receptors in the monkey striatum: subsynaptic association with glutamatergic and dopaminergic afferents. J Neurosci. 2003 Aug 20;23(20):7659-69. doi: 10.1523/JNEUROSCI.23-20-07659.2003. PMID: 12930805; PMCID: PMC6740746.

  211. Garcia-Garcia AL, Elizalde N, Matrov D, Harro J, Wojcik SM, Venzala E, Ramírez MJ, Del Rio J, Tordera RM (2009): Increased vulnerability to depressive-like behavior of mice with decreased expression of VGLUT1. Biol Psychiatry. 2009 Aug 1;66(3):275-82. doi: 10.1016/j.biopsych.2009.02.027. PMID: 19409534.

  212. Moutsimilli L, Farley S, Dumas S, El Mestikawy S, Giros B, Tzavara ET (2005): Selective cortical VGLUT1 increase as a marker for antidepressant activity. Neuropharmacology. 2005 Nov;49(6):890-900. doi: 10.1016/j.neuropharm.2005.06.017. PMID: 16111724.

  213. Moutsimilli L, Farley S, El Khoury MA, Chamot C, Sibarita JB, Racine V, El Mestikawy S, Mathieu F, Dumas S, Giros B, Tzavara ET (2008): Antipsychotics increase vesicular glutamate transporter 2 (VGLUT2) expression in thalamolimbic pathways. Neuropharmacology. 2008 Mar;54(3):497-508. doi: 10.1016/j.neuropharm.2007.10.022. PMID: 18155072.

  214. Birgner C, Nordenankar K, Lundblad M, Mendez JA, Smith C, le Grevès M, Galter D, Olson L, Fredriksson A, Trudeau LE, Kullander K, Wallén-Mackenzie A (2010): VGLUT2 in dopamine neurons is required for psychostimulant-induced behavioral activation. Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):389-94. doi: 10.1073/pnas.0910986107. PMID: 20018672; PMCID: PMC2806710.

  215. Shen H, Chen K, Marino RAM, McDevitt RA, Xi ZX (2021): Deletion of VGLUT2 in midbrain dopamine neurons attenuates dopamine and glutamate responses to methamphetamine in mice. Pharmacol Biochem Behav. 2021 Mar;202:173104. doi: 10.1016/j.pbb.2021.173104. PMID: 33444596; PMCID: PMC9354859.

  216. Riddle EL, Hanson GR, Fleckenstein AE (2007): Therapeutic doses of amphetamine and methylphenidate selectively redistribute the vesicular monoamine transporter-2. Eur J Pharmacol. 2007 Sep 24;571(1):25-8. doi: 10.1016/j.ejphar.2007.05.044. PMID: 17618619; PMCID: PMC2581712.

  217. Sandoval V, Riddle EL, Hanson GR, Fleckenstein AE (2002): Methylphenidate redistributes vesicular monoamine transporter-2: role of dopamine receptors. J Neurosci. 2002 Oct 1;22(19):8705-10. doi: 10.1523/JNEUROSCI.22-19-08705.2002. PMID: 12351745; PMCID: PMC6757793.

  218. Volz TJ, Farnsworth SJ, King JL, Riddle EL, Hanson GR, Fleckenstein AE (2007): Methylphenidate administration alters vesicular monoamine transporter-2 function in cytoplasmic and membrane-associated vesicles. J Pharmacol Exp Ther. 2007 Nov;323(2):738-45. doi: 10.1124/jpet.107.126888. PMID: 17693585.

  219. Fleckenstein AE, Volz TJ, Hanson GR (2009): Psychostimulant-induced alterations in vesicular monoamine transporter-2 function: neurotoxic and therapeutic implications. Neuropharmacology. 2009;56 Suppl 1(Suppl 1):133-8. doi: 10.1016/j.neuropharm.2008.07.002. PMID: 18662707; PMCID: PMC2634813. REVIEW

  220. Fleckenstein AE, Hanson GR (2003): Impact of psychostimulants on vesicular monoamine transporter function. Eur J Pharmacol. 2003 Oct 31;479(1-3):283-9. doi: 10.1016/j.ejphar.2003.08.077. PMID: 14612158. REVIEW

  221. Goto, Grace (2005): Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nat Neurosci. 2005 Jun;8(6):805-12. doi: 10.1038/nn1471. PMID: 15908948.

  222. Robbe D, Kopf M, Remaury A, Bockaert J, Manzoni OJ (2002): Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8384-8. doi: 10.1073/pnas.122149199. PMID: 12060781; PMCID: PMC123076.

  223. Lafourcade M, Elezgarai I, Mato S, Bakiri Y, Grandes P, Manzoni OJ (2007): Molecular components and functions of the endocannabinoid system in mouse prefrontal cortex. PLoS One. 2007 Aug 8;2(8):e709. doi: 10.1371/journal.pone.0000709. PMID: 17684555; PMCID: PMC1933592.

  224. Otani S, Auclair N, Desce JM, Roisin MP, Crépel F (1999): Dopamine receptors and groups I and II mGluRs cooperate for long-term depression induction in rat prefrontal cortex through converging postsynaptic activation of MAP kinases. J Neurosci. 1999 Nov 15;19(22):9788-802. doi: 10.1523/JNEUROSCI.19-22-09788.1999. PMID: 10559388; PMCID: PMC6782965.

  225. Otani S, Daniel H, Takita M, Crépel F (2002): Long-term depression induced by postsynaptic group II metabotropic glutamate receptors linked to phospholipase C and intracellular calcium rises in rat prefrontal cortex. J Neurosci. 2002 May 1;22(9):3434-44. doi: 10.1523/JNEUROSCI.22-09-03434.2002. PMID: 11978820; PMCID: PMC6758351.

  226. Fourgeaud L, Mato S, Bouchet D, Hémar A, Worley PF, Manzoni OJ (2004): A single in vivo exposure to cocaine abolishes endocannabinoid-mediated long-term depression in the nucleus accumbens. J Neurosci. 2004 Aug 4;24(31):6939-45. doi: 10.1523/JNEUROSCI.0671-04.2004. PMID: 15295029; PMCID: PMC6729592.

  227. Mato S, Robbe D, Puente N, Grandes P, Manzoni OJ (2005): Presynaptic homeostatic plasticity rescues long-term depression after chronic Delta 9-tetrahydrocannabinol exposure. J Neurosci. 2005 Dec 14;25(50):11619-27. doi: 10.1523/JNEUROSCI.2294-05.2005. PMID: 16354920; PMCID: PMC6726043.

  228. Pan B, Hillard CJ, Liu QS (2008): D2 dopamine receptor activation facilitates endocannabinoid-mediated long-term synaptic depression of GABAergic synaptic transmission in midbrain dopamine neurons via cAMP-protein kinase A signaling. J Neurosci. 2008 Dec 24;28(52):14018-30. doi: 10.1523/JNEUROSCI.4035-08.2008. PMID: 19109485; PMCID: PMC2656602.

  229. Tong J, Liu X, Vickstrom C, Li Y, Yu L, Lu Y, Smrcka AV, Liu QS (2017): The Epac-Phospholipase Cε Pathway Regulates Endocannabinoid Signaling and Cocaine-Induced Disinhibition of Ventral Tegmental Area Dopamine Neurons. J Neurosci. 2017 Mar 15;37(11):3030-3044. doi: 10.1523/JNEUROSCI.2810-16.2017. PMID: 28209735; PMCID: PMC5354337.

  230. Buczynski MW, Herman MA, Hsu KL, Natividad LA, Irimia C, Polis IY, Pugh H, Chang JW, Niphakis MJ, Cravatt BF, Roberto M, Parsons LH (2016): Diacylglycerol lipase disinhibits VTA dopamine neurons during chronic nicotine exposure. Proc Natl Acad Sci U S A. 2016 Jan 26;113(4):1086-91. doi: 10.1073/pnas.1522672113. PMID: 26755579; PMCID: PMC4743781.

  231. Gobira PH, Oliveira AC, Gomes JS, da Silveira VT, Asth L, Bastos JR, Batista EM, Issy AC, Okine BN, de Oliveira AC, Ribeiro FM, Del Bel EA, Aguiar DC, Finn DP, Moreira FA (2019): Opposing roles of CB1 and CB2 cannabinoid receptors in the stimulant and rewarding effects of cocaine. Br J Pharmacol. 2019 May;176(10):1541-1551. doi: 10.1111/bph.14473. PMID: 30101419; PMCID: PMC6487550.

  232. Tzavara ET, Degroot A, Wade MR, Davis RJ, Nomikos GG (2009): CB1 receptor knockout mice are hyporesponsive to the behavior-stimulating actions of d-amphetamine: role of mGlu5 receptors. Eur Neuropsychopharmacol. 2009 Mar;19(3):196-204. doi: 10.1016/j.euroneuro.2008.11.003. PMID: 19116182.

  233. Ferrer B, Asbrock N, Kathuria S, Piomelli D, Giuffrida A (2003): Effects of levodopa on endocannabinoid levels in rat basal ganglia: implications for the treatment of levodopa-induced dyskinesias. Eur J Neurosci. 2003 Sep;18(6):1607-14. doi: 10.1046/j.1460-9568.2003.02896.x. PMID: 14511339.

  234. Beltramo M, de Fonseca FR, Navarro M, Calignano A, Gorriti MA, Grammatikopoulos G, Sadile AG, Giuffrida A, Piomelli D (2000): Reversal of dopamine D(2) receptor responses by an anandamide transport inhibitor. J Neurosci. 2000 May 1;20(9):3401-7. doi: 10.1523/JNEUROSCI.20-09-03401.2000. PMID: 10777802; PMCID: PMC6773117.

  235. Pinna A, Serra M, Marongiu J, Morelli M (2020): Pharmacological interactions between adenosine A2A receptor antagonists and different neurotransmitter systems. Parkinsonism Relat Disord. 2020 Nov;80 Suppl 1:S37-S44. doi: 10.1016/j.parkreldis.2020.10.023. PMID: 33349579. REVIEW

  236. Lu HC, Mackie K (2016): An Introduction to the Endogenous Cannabinoid System. Biol Psychiatry. 2016 Apr 1;79(7):516-25. doi: 10.1016/j.biopsych.2015.07.028. PMID: 26698193; PMCID: PMC4789136. REVIEW

  237. Melis M, De Felice M, Lecca S, Fattore L, Pistis M (2013): Sex-specific tonic 2-arachidonoylglycerol signaling at inhibitory inputs onto dopamine neurons of Lister Hooded rats. Front Integr Neurosci. 2013 Dec 19;7:93. doi: 10.3389/fnint.2013.00093. PMID: 24416004; PMCID: PMC3867690.

  238. Kellogg R, Mackie K, Straiker A (2009): Cannabinoid CB1 receptor-dependent long-term depression in autaptic excitatory neurons. J Neurophysiol. 2009 Aug;102(2):1160-71. doi: 10.1152/jn.00266.2009. PMID: 19494194; PMCID: PMC2724344.

  239. Jin X, Costa RM (2015): Shaping action sequences in basal ganglia circuits. Curr Opin Neurobiol. 2015 Aug;33:188-96. doi: 10.1016/j.conb.2015.06.011. PMID: 26189204; PMCID: PMC4523429. REVIEW

  240. Hilário MR, Clouse E, Yin HH, Costa RM (2007): Endocannabinoid signaling is critical for habit formation. Front Integr Neurosci. 2007 Nov 2;1:6. doi: 10.3389/neuro.07.006.2007. PMID: 18958234; PMCID: PMC2526012.

  241. Marinelli S, Pacioni S, Bisogno T, Di Marzo V, Prince DA, Huguenard JR, Bacci A (2008): The endocannabinoid 2-arachidonoylglycerol is responsible for the slow self-inhibition in neocortical interneurons. J Neurosci. 2008 Dec 10;28(50):13532-41. doi: 10.1523/JNEUROSCI.0847-08.2008. PMID: 19074027; PMCID: PMC2615383.

  242. Marinelli S, Pacioni S, Cannich A, Marsicano G, Bacci A (2009): Self-modulation of neocortical pyramidal neurons by endocannabinoids. Nat Neurosci. 2009 Dec;12(12):1488-90. doi: 10.1038/nn.2430. PMID: 19915567.

Diese Seite wurde am 24.05.2025 zuletzt aktualisiert.