Header Image
What regulates cannabinoids

Sitemap

What regulates cannabinoids

1. Dopaminergic drugs influence endocannabinoid synthesis

Chronic drug use changes the CB1R density in various brain regions.
Chronic cocaine use causes:1

  • small but significant decrease in 2-AG in the limbic forebrain

Chronic exposure to alcohol causes:1

  • AEA decreases in the midbrain
  • 2-AG decreases in the midbrain
  • AEA increased in the limbic forebrain

Chronic nicotine exposure causes:1

  • AEA increased in the limbic forebrain and brainstem
  • 2-AG increased in the brain stem
  • AEA and 2-AG reduced in hippocampus, striatum and PFC
  • CB1R unchanged

2. Activated receptors cause endocannabinoid synthesis

2.1. Dopamine D2 receptors, D2R

Stimulation of D2R increases endocannabinoids in the striatum23 4 5 and sensitizes the CB1R.6

D2R expressed on cholinergic interneurons inhibited 2-AG release by inhibiting the release of acetylcholine7

2.2. Metabotropic glutamatergic GPCRs, mGluR

mGluRs (metabotropic glutamatergic GPCRs) trigger the release of endocannabinoids.8 This endocannabinoid release caused by mGluR activation is found in many areas of the brain.9
Coupling postsynaptic depolarization with the activation of Gq-like G proteins (such as the group I metabotropic glutamate receptors, mGluR1, mGluR5) or the M1 and M3 subtypes of muscarinic acetylcholine receptors (mAChR1, mAChR3, which activate phospholipase C) increases endocannabinoid synthesis and release.10

2.2. Coactivation of ionotropic AMPAR and NMDAR as well as muscarinic M1R

Efficient 2-AG mobilization required the co-activation of ionotropic AMPA and NMDA glutamate receptors and muscarinic M1 receptors7
D2R expressed on cholinergic interneurons inhibited the mobilization of 2-AG by inhibiting the release of acetylcholine7

2.3. Muscarinic acetylcholine receptors, mAChR

mAChR (muscarinic acetylcholine receptors) cause the release of endocannabinoids in the hippocampus.11

2.4. Serotonin receptors

5HT2A and 5HT2C receptors release endocannabinoids and activate the endocannabinoid system.12 In CB1R-KO mice, serotonergic function via 5HT2A and 5HT2C receptors is impaired.
Systemic administration of serotonin exacerbated abdominal pain and colitis, which correlated with decreased AEA levels via 5-HT3 and 5-HT4 receptors. Serotonin administration significantly reduced the AEA precursor NAPE-PLD. 5-HT3 and 5-HT4 receptor antagonists remedied this.13

2.5. Angiotensin AT1 receptors

Activation of G-coupled AT1 receptors by angiotensin can stimulate CB1R, which regulates blood pressure in the hypothalamus.12

3. Sports increase endocannabinoids

Sports increased CB1R-mediated presynaptic control of inhibitory postsynaptic striatal currents in rodents, while the sensitivity of glutamate synapses to CB1R stimulation remained unchanged, as did that of GABA synapses to stimulation of presynaptic GABA-B receptors. Sensitization of CB1R mediated sports-induced protection against stress damage.6
One round of aerobic exercise, especially at moderate intensity, increased blood levels of the endocannabinoids AEA and 2-AG14
This contributes significantly to mood enhancement and stress reduction in healthy individuals. Moderate and high-intensity aerobic exercise modulates stress through a negative feedback loop on the HPA axis as well as the sympathetic nervous system, which facilitates stress regulation that plays a crucial role in endocannabinoid synthesis.14

4. Sugar consumption

Sugar consumption increased CB1R-mediated presynaptic control of inhibitory postsynaptic striatal currents in rodents, while the sensitivity of glutamate synapses to CB1R stimulation remained unchanged, as did that of GABA synapses to stimulation of presynaptic GABA-B receptors.6

5. Stress reduces AEA

See under Cannabinoids for ADHD and stress


  1. González S, Cascio MG, Fernández-Ruiz J, Fezza F, Di Marzo V, Ramos JA (2002): Changes in endocannabinoid contents in the brain of rats chronically exposed to nicotine, ethanol or cocaine. Brain Res. 2002 Nov 1;954(1):73-81. doi: 10.1016/s0006-8993(02)03344-9. PMID: 12393235.

  2. Solinas M, Tanda G, Wertheim CE, Goldberg SR (2010): Dopaminergic augmentation of delta-9-tetrahydrocannabinol (THC) discrimination: possible involvement of D(2)-induced formation of anandamide. Psychopharmacology (Berl). 2010 Apr;209(2):191-202. doi: 10.1007/s00213-010-1789-8. PMID: 20179908; PMCID: PMC2834964.

  3. Giuffrida A, Parsons LH, Kerr TM, Rodríguez de Fonseca F, Navarro M, Piomelli D (1999): Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat Neurosci. 1999 Apr;2(4):358-63. doi: 10.1038/7268. PMID: 10204543.

  4. Beltramo M, de Fonseca FR, Navarro M, Calignano A, Gorriti MA, Grammatikopoulos G, Sadile AG, Giuffrida A, Piomelli D (2000): Reversal of dopamine D(2) receptor responses by an anandamide transport inhibitor. J Neurosci. 2000 May 1;20(9):3401-7. doi: 10.1523/JNEUROSCI.20-09-03401.2000. PMID: 10777802; PMCID: PMC6773117.

  5. Centonze D, Battista N, Rossi S, Mercuri NB, Finazzi-Agrò A, Bernardi G, Calabresi P, Maccarrone M (2004): A critical interaction between dopamine D2 receptors and endocannabinoids mediates the effects of cocaine on striatal gabaergic Transmission. Neuropsychopharmacology. 2004 Aug;29(8):1488-97. doi: 10.1038/sj.npp.1300458. PMID: 15100701.

  6. De Chiara V, Errico F, Musella A, Rossi S, Mataluni G, Sacchetti L, Siracusano A, Castelli M, Cavasinni F, Bernardi G, Usiello A, Centonze D (2010): Voluntary exercise and sucrose consumption enhance cannabinoid CB1 receptor sensitivity in the striatum. Neuropsychopharmacology. 2010 Jan;35(2):374-87. doi: 10.1038/npp.2009.141. PMID: 19776732; PMCID: PMC3055381.

  7. Liput DJ, Puhl HL, Dong A, He K, Li Y, Lovinger DM (2022): 2-Arachidonoylglycerol mobilization following brief synaptic stimulation in the dorsal lateral striatum requires glutamatergic and cholinergic neurotransmission. Neuropharmacology. 2022 Mar 1;205:108916. doi: 10.1016/j.neuropharm.2021.108916. PMID: 34896118; PMCID: PMC8843864.

  8. Maejima T, Hashimoto K, Yoshida T, Aiba A, Kano M (2001): Presynaptic inhibition caused by retrograde signal from metabotropic glutamate to cannabinoid receptors. Neuron. 2001 Aug 16;31(3):463-75. doi: 10.1016/s0896-6273(01)00375-0. PMID: 11516402.

  9. Izumi Y, Zorumski CF (2012): NMDA receptors, mGluR5, and endocannabinoids are involved in a cascade leading to hippocampal long-term depression. Neuropsychopharmacology. 2012 Feb;37(3):609-17. doi: 10.1038/npp.2011.243. PMID: 21993209; PMCID: PMC3260982.

  10. Ohno-Shosaku T, Shosaku J, Tsubokawa H, Kano M (2002): Cooperative endocannabinoid production by neuronal depolarization and group I metabotropic glutamate receptor activation. Eur J Neurosci. 2002 Mar;15(6):953-61. doi: 10.1046/j.1460-9568.2002.01929.x. PMID: 11918654.

  11. Kim J, Isokawa M, Ledent C, Alger BE (2002): Activation of muscarinic acetylcholine receptors enhances the release of endogenous cannabinoids in the hippocampus. J Neurosci. 2002 Dec 1;22(23):10182-91. doi: 10.1523/JNEUROSCI.22-23-10182.2002. PMID: 12451119; PMCID: PMC6758770.

  12. Brunt TM, Bossong MG (2022): The neuropharmacology of cannabinoid receptor ligands in central signaling pathways. Eur J Neurosci. 2022 Feb;55(4):909-921. doi: 10.1111/ejn.14982. PMID: 32974975; PMCID: PMC9291836. REVIEW

  13. Salaga M, Binienda A, Piscitelli F, Mokrowiecka A, Cygankiewicz AI, Verde R, Malecka-Panas E, Kordek R, Krajewska WM, Di Marzo V, Fichna J (2019): Systemic administration of serotonin exacerbates abdominal pain and colitis via interaction with the endocannabinoid system. Biochem Pharmacol. 2019 Mar;161:37-51. doi: 10.1016/j.bcp.2019.01.001. PMID: 30611738.

  14. Gupta S, Bharatha A, Cohall D, Rahman S, Haque M, Azim Majumder MA (2024): Aerobic Exercise and Endocannabinoids: A Narrative Review of Stress Regulation and Brain Reward Systems. Cureus. 2024 Mar 4;16(3):e55468. doi: 10.7759/cureus.55468. PMID: 38440201; PMCID: PMC10910469. REVIEW

Diese Seite wurde am 24.05.2025 zuletzt aktualisiert.