Header Image
5. RNA genes

Sitemap

5. RNA genes

RNA genes are genes that do not code for proteins.

1.87. FEZF1-AS1, FEZF1 antisense RNA 1 (chromosome 7q31.32)

FEZF1-AS1 is not a protein gene, but an RNA gene from the lncRNA class. FEZF1-AS1 is associated with the following diseases:

  • ductal adenocarcinoma of the pancreas
  • Stomach cancer.

OMIM: FEZF1-AS1

rs3958046 of FEZF1-AS1 is a candidate gene for ADHD.12

rs11767283 correlates with age at first sexual intercourse
rs11767283 correlates with diet
rs145467198 correlates with the bone mineral density of the heel
rs7779018 correlates with schizophrenia

1.192. LOC100507468

LOC100507468 has 150 functional associations with biological entities spanning 5 categories (organism, disease, phenotype or trait, chemical, cell line, cell type or tissue, gene, protein or microRNA).3

One study found LOC100507468 (variant rs1195234) to be one of 96 ADHD candidate genes.4

1.194. LINC00355, Long Intergenic Non-Protein Coding RNA 355

Other names: NONHSAG013685.2; NONHSAG013688.2; NONHSAG013687.2; HSALNG0097622; HSALNG0097626; HSALNG0097627; LINC00355

LINC00355 is an RNA gene that belongs to the lncRNA class.5
LINC00355 is associated with

  • Bladder cancer

One study found LINC00355 (variant rs9528776) to be one of 96 ADHD candidate genes.4

1.197. LOC101927967, Uncharacterized LOC101927967

Other names: ONHSAG028283.2; SALNG0016229; HSALNG0016258; Lnc-LRRTM4-3

LOC101927967 is an RNA gene and belongs to the lncRNA class.6

One study found LOC101927967 (variant rs1819004) as one of 96 candidate genes.4

1.198. IFNG-AS1, IFNG Antisense RNA 1

Other names: LincR-Ifng-3’AS; Tmevpg1; NEST; Theiler’S Murine Encephalomyelitis Virus Persistence Candidate Gene 1; FNG Antisense RNA 1; NONHSAG011599.2; HSALNG0092137; GS1-410F4.2; IFNG-AS1

IFNG-AS1 is an RNA gene and belongs to the lncRNA class.7
IFNG-AS1 is associated with

  • Ulcerative colitis
  • Sjogren’s syndrome

One study found IFNG-AS1 (variant rs17629076) as one of 96 ADHD candidate genes.4

1.200. LOC101929484

We have not found any information for LOC101929484.

One study found LOC101929484 (variant rs2343365) to be one of 96 ADHD candidate genes.4

1.201. LOC100133050, glucuronidase beta pseudogene

We have not found any information for LOC100133050.

One study found LOC100133050 (variant rs7717154) to be one of 96 ADHD candidate genes.4

1.204. C6orf123, LINC01558, Long Intergenic Non-Protein Coding RNA 1558

Other names: DJ431P23.4; C6orf123; HGC6.2; Long Intergenic Non-Protein Coding RNA 1557; LINC01557; Uncharacterized Protein Encoded By LINC01558; Chromosome 6 Open Reading Frame 123; NONHSAG045429.2; Protein HGC6.2; HSALNG0055207; LINC01558

C6orf123 (LINC01558) is an RNA gene that belongs to the lncRNA class.8

One study found C6orf123 (variant rs543930) to be one of 96 ADHD candidate genes.4

1.205. LINC01364, Long Intergenic Non-Protein Coding RNA 1364

Other names: NONHSAG001996.2; SALNG0004963; LINC01364

LINC01364 is an RNA gene that belongs to the lncRNA class.9

One study found LINC01364 (variant rs12745339) to be one of 96 ADHD candidate genes.4

1.213. LOC101929184

We could not find any information on LOC101929184,

One study found LOC101929184 (variant rs12757080) to be one of 96 ADHD candidate genes.4

1.215. LOC101927797

We could not find any information on LOC101927797.

One study found LOC101927797 (variant rs2824866) to be one of 96 ADHD candidate genes.4

1.216. LINC02229:9, LOC101928769

Other names: NSG00000250313; RP11-5P22.3; ENSG00000250313.2; OTTHUMG00000162359.2; LINC0222910

LINC02229 is an RNA gene and belongs to the lncRNA class.11

LOC101928769 seems to correlate with a reduced hippocamus volume.12

One study found LOC101928769 (variant rs6865656 and variant rs2968194) to be one of 96 ADHD candidate genes.4

1.217. MIR4255, MicroRNA 4255

Other names: Hsa-Mir-4255; MIMAT0016885; Hsa-MiR-4255; MI0015863

MIR4255 is an RNA gene from the miRNA class.13

MicroRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in the post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs), which can be either protein-coding or non-coding. The primary transcript is cleaved by the enzyme Drosha ribonuclease III to generate an approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which in turn is cleaved by the cytoplasmic ribonuclease Dicer to generate the mature miRNA and antisense miRNA star products (miRNA*). The mature miRNA is incorporated into an RNA-induced silencing complex (RISC), which recognizes target mRNAs by incomplete base pairing with the miRNA and in most cases leads to translational inhibition or destabilization of the target mRNA. RefSeq represents the probable microRNA stem-loop. [provided by RefSeq, Sep 2009]

One study found MIR4255 (variant rs11264025) to be one of 96 ADHD candidate genes.4

1.224. LINC01377, Long Intergenic Non-Protein Coding RNA 1377

Other names: NONHSAG039702.2; CTD-2029E14.1; HSALNG0039710; Lnc-IRX1-5

LINC01377 is an RNA gene that belongs to the lncRNA class.14

One study found LINC01377 (variant rs469546) to be one of 96 ADHD candidate genes.4

1.239. CASC17, Cancer Susceptibility 17

Other names: LINC00600; Cancer Susceptibility Candidate 17; Cancer Susceptibility 17; Long Intergenic Non-Protein Coding RNA 600; NONHSAG022649.2; HSALNG0118488; CASC17

CASC17 is an RNA gene and belongs to the class of lncRNAs.15
CASC17 is associated with Robinow syndrome, autosomal recessive 1.

One study found CASC17 (variant rs7224246) as one of 96 ADHD candidate genes.4

1.289. LINC02497, Long Intergenic Non-Protein Coding RNA 2497

Other names: NONHSAG037712.2; HSALNG0033638; LINC02497

LINC02497 is an RNA gene that belongs to the lncRNA class.16

This gene was identified as an ADHD candidate gene in a large GWAS.17

1.290. LINC00461, Long Intergenic Non-Protein Coding RNA 461

Other names: EyeLinc1; ECONEXIN; NDIME; Neural Differentiation Initiation Of MEF2C Expression; LOC645323; Evolutionary Conserved And Expressed In Neural Tissues (ECONEXIN); Evolutionary Conserved And Expressed In Neural Tissues; Visual Cortex Expressed; Visual Cortex-Expressed; NONHSAG040968.2; NONHSAG040969.2; HSALNG0043367; HSALNG0043368; LincRNA 461; LINC00461; Visc-1a; Visc-1b; Visc-2; Visc; VISC

LINC00461 is an RNA gene and belongs to the lncRNA class (mir-9/mir-79 microRNA precursor family RF00237). LINC00461 is an evolutionarily conserved gene that produces alternatively spliced long non-coding RNAs that can be expressed primarily in the brain and visual cortex. These transcripts may be involved in tumorigenesis, as depletion by siRNA suppresses glioma cell division. The transcripts can bind to miR-411-5p and Argonaut 2 and regulate their activity, thereby altering the expression of genes involved in tumor growth.18
LINC00461 is associated with

  • Glioma
  • Cataract 24.

This gene was identified as an ADHD candidate gene in a large GWAS.17

1.291. MIR9-2, MicroRNA 9-2

Other names: Hsa-MiR-9-3p; Hsa-MiR-9-5p; Hsa-Mir-9-2; MIRN9-2; Hsa-Mir-9-P2_pre; MIMAT0000441; MIMAT0000442; MI0000467; MiRNA9-2; Mir-9-2; RF00237

MIR9-2 is an RNA gene belonging to the class of miRNAs (mir-9/mir-79 microRNA precursor family RF00237). microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs involved in the post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs), which can be either protein-coding or non-coding. The primary transcript is cleaved by the enzyme Drosha ribonuclease III to generate an approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which in turn is cleaved by the cytoplasmic ribonuclease Dicer to generate the mature miRNA and antisense miRNA star products (miRNA*). The mature miRNA is incorporated into an RNA-induced silencing complex (RISC), which recognizes target mRNAs by incomplete base pairing with the miRNA and in most cases leads to translational inhibition or destabilization of the target mRNA. The RefSeq represents the probable microRNA stem-loop.19
MIR9-2 is associated with

  • oral squamous cell carcinoma
  • Glioblastoma

Related signaling pathways:

  • Transition from epithelium to mesenchyme in colorectal cancer.

This gene was identified as an ADHD candidate gene in a large GWAS.17

1.292. LINC02060, Long Intergenic Non-Protein Coding RNA 2060

Other names: NONHSAG040966.2; HSALNG0043365; CTC-498M16.2; LINC02060

LINC02060 is an RNA gene from the lncRNA class.20
This gene was identified as an ADHD candidate gene in a large GWAS.17

1.293. TMEM161B-AS1, TMEM161B Divergent Transcript

Other names: TMEM161B-DT, Linc-POLR3G-8; TMEM161B Antisense RNA 1; TMEM161B Antisense RNA 1; NONHSAG040958.2; SALNG0043357; HSALNG0043358; CTC-358I24.1; Lnc-RASA1-4

TMEM161B-DT is an RNA gene from the lncRNA class.21
This gene was identified as an ADHD candidate gene in a large GWAS.17

1.294. MIR3666, MicroRNA 3666

Other names: Hsa-Mir-3666; MIMAT0018088; Hsa-MiR-3666; MI0016067

MIR3666 is an RNA gene of the miRNA class. microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in the post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs), which can be either protein-coding or non-coding. The primary transcript is cleaved by the enzyme Drosha ribonuclease III to generate an approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which in turn is cleaved by the cytoplasmic ribonuclease Dicer to generate the mature miRNA and antisense miRNA star products (miRNA*). The mature miRNA is incorporated into an RNA-induced silencing complex (RISC), which recognizes target mRNAs by incomplete base pairing with the miRNA and in most cases leads to translational inhibition or destabilization of the target mRNA. The RefSeq represents the probable microRNA stem-loop.22

This gene was identified as an ADHD candidate gene in a large GWAS.17

1.295. LINC01288, Long Intergenic Non-Protein Coding RNA 1288

Other names: TCONS_00014671; NONHSAG049959.2; HSALNG0064496; LINC01288

LINC01288 is an RNA gene from the lncRNA class.23

This gene was identified as an ADHD candidate gene in a large GWAS.17

1.300. LINC01572, Long Intergenic Non-Protein Coding RNA 1572

Other names: NONHSAG019920.2; NONHSAG019917.2; HSALNG0112544; LINC01572

LINC01572 is an RNA gene from the lncRNA class.24

This gene was identified as an ADHD candidate gene in a large GWAS.17

1.301. Intergenic, locus 2, chromosome 1, base position 96602440, variant rs1222063

This “gene” was identified as an ADHD candidate gene in a large GWAS.17

In one study, however, the frequency distribution of the rs1222063 genotype did not correspond to the Hardy-Weinberg equilibrium test (P < 0.05) and was therefore not representative of the population.25

1.302. Intergenic locus 4, chromosome 3, base position 20669071, variant rs4858241

This “gene” was identified as an ADHD candidate gene in a large GWAS.17

One study found increased Stroop response times.25

1.313. LncRNA HULC

Increased expression of CLOCK, PER1, lncRNA HULC and lncRNA UCA1 correlated with evening chronotype, problems falling asleep and staying asleep, disorders of the sleep-wake transition and excessive sleepiness in ADHD. There was no significant correlation between individual genes and specific sleep parameters.26

1.314. LncRNA UCA1

Increased expression of CLOCK, PER1, lncRNA HULC and lncRNA UCA1 correlated with evening chronotype, problems falling asleep and staying asleep, disorders of the sleep-wake transition and excessive sleepiness in ADHD. There was no significant correlation between individual genes and specific sleep parameters.26


  1. Alonso-Gonzalez, Calaza, Rodriguez-Fontenla, Carracedo (2019): Gene-based analysis of ADHD using PASCAL: a biological insight into the novel associated genes. BMC Med Genomics. 2019 Oct 24;12(1):143. doi: 10.1186/s12920-019-0593-5.

  2. FEZF1-AS1 Gene - FEZF1 Antisense RNA 1, GeneCards

  3. LOC100507468, https://maayanlab.cloud

  4. Liu, Feng, Li, Cheng, Qian, Wang (2021): Deep learning model reveals potential risk genes for ADHD, especially Ephrin receptor gene EPHA5. Brief Bioinform. 2021 Jun 9:bbab207. doi: 10.1093/bib/bbab207. PMID: 34109382. n = 1.983

  5. LINC00355, GeneCards.org

  6. LOC101927967, GeneCards.org

  7. IFNG-AS1, GeneCards.org

  8. LINC01558, GeneCards.org

  9. LINC01364, GeneCards.org

  10. LINC02229:9; LNCipedia

  11. LINC02229, GeneCards.org

  12. Hibar DP, Adams HHH, Jahanshad N, Chauhan G, Stein JL, Hofer E, Renteria ME, Bis JC, Arias-Vasquez A, Ikram MK, Desrivières S, Vernooij MW, Abramovic L, Alhusaini S, Amin N, Andersson M, Arfanakis K, Aribisala BS, Armstrong NJ, Athanasiu L, Axelsson T, Beecham AH, Beiser A, Bernard M, Blanton SH, Bohlken MM, Boks MP, Bralten J, Brickman AM, Carmichael O, Chakravarty MM, Chen Q, Ching CRK, Chouraki V, Cuellar-Partida G, Crivello F, Den Braber A, Doan NT, Ehrlich S, Giddaluru S, Goldman AL, Gottesman RF, Grimm O, Griswold ME, Guadalupe T, Gutman BA, Hass J, Haukvik UK, Hoehn D, Holmes AJ, Hoogman M, Janowitz D, Jia T, Jørgensen KN, Karbalai N, Kasperaviciute D, Kim S, Klein M, Kraemer B, Lee PH, Liewald DCM, Lopez LM, Luciano M, Macare C, Marquand AF, Matarin M, Mather KA, Mattheisen M, McKay DR, Milaneschi Y, Muñoz Maniega S, Nho K, Nugent AC, Nyquist P, Loohuis LMO, Oosterlaan J, Papmeyer M, Pirpamer L, Pütz B, Ramasamy A, Richards JS, Risacher SL, Roiz-Santiañez R, Rommelse N, Ropele S, Rose EJ, Royle NA, Rundek T, Sämann PG, Saremi A, Satizabal CL, Schmaal L, Schork AJ, Shen L, Shin J, Shumskaya E, Smith AV, Sprooten E, Strike LT, Teumer A, Tordesillas-Gutierrez D, Toro R, Trabzuni D, Trompet S, Vaidya D, Van der Grond J, Van der Lee SJ, Van der Meer D, Van Donkelaar MMJ, Van Eijk KR, Van Erp TGM, Van Rooij D, Walton E, Westlye LT, Whelan CD, Windham BG, Winkler AM, Wittfeld K, Woldehawariat G, Wolf C, Wolfers T, Yanek LR, Yang J, Zijdenbos A, Zwiers MP, Agartz I, Almasy L, Ames D, Amouyel P, Andreassen OA, Arepalli S, Assareh AA, Barral S, Bastin ME, Becker DM, Becker JT, Bennett DA, Blangero J, van Bokhoven H, Boomsma DI, Brodaty H, Brouwer RM, Brunner HG, Buckner RL, Buitelaar JK, Bulayeva KB, Cahn W, Calhoun VD, Cannon DM, Cavalleri GL, Cheng CY, Cichon S, Cookson MR, Corvin A, Crespo-Facorro B, Curran JE, Czisch M, Dale AM, Davies GE, De Craen AJM, De Geus EJC, De Jager PL, De Zubicaray GI, Deary IJ, Debette S, DeCarli C, Delanty N, Depondt C, DeStefano A, Dillman A, Djurovic S, Donohoe G, Drevets WC, Duggirala R, Dyer TD, Enzinger C, Erk S, Espeseth T, Fedko IO, Fernández G, Ferrucci L, Fisher SE, Fleischman DA, Ford I, Fornage M, Foroud TM, Fox PT, Francks C, Fukunaga M, Gibbs JR, Glahn DC, Gollub RL, Göring HHH, Green RC, Gruber O, Gudnason V, Guelfi S, Håberg AK, Hansell NK, Hardy J, Hartman CA, Hashimoto R, Hegenscheid K, Heinz A, Le Hellard S, Hernandez DG, Heslenfeld DJ, Ho BC, Hoekstra PJ, Hoffmann W, Hofman A, Holsboer F, Homuth G, Hosten N, Hottenga JJ, Huentelman M, Hulshoff Pol HE, Ikeda M, Jack CR Jr, Jenkinson M, Johnson R, Jönsson EG, Jukema JW, Kahn RS, Kanai R, Kloszewska I, Knopman DS, Kochunov P, Kwok JB, Lawrie SM, Lemaître H, Liu X, Longo DL, Lopez OL, Lovestone S, Martinez O, Martinot JL, Mattay VS, McDonald C, McIntosh AM, McMahon FJ, McMahon KL, Mecocci P, Melle I, Meyer-Lindenberg A, Mohnke S, Montgomery GW, Morris DW, Mosley TH, Mühleisen TW, Müller-Myhsok B, Nalls MA, Nauck M, Nichols TE, Niessen WJ, Nöthen MM, Nyberg L, Ohi K, Olvera RL, Ophoff RA, Pandolfo M, Paus T, Pausova Z, Penninx BWJH, Pike GB, Potkin SG, Psaty BM, Reppermund S, Rietschel M, Roffman JL, Romanczuk-Seiferth N, Rotter JI, Ryten M, Sacco RL, Sachdev PS, Saykin AJ, Schmidt R, Schmidt H, Schofield PR, Sigursson S, Simmons A, Singleton A, Sisodiya SM, Smith C, Smoller JW, Soininen H, Steen VM, Stott DJ, Sussmann JE, Thalamuthu A, Toga AW, Traynor BJ, Troncoso J, Tsolaki M, Tzourio C, Uitterlinden AG, Hernández MCV, Van der Brug M, van der Lugt A, van der Wee NJA, Van Haren NEM, van ’t Ent D, Van Tol MJ, Vardarajan BN, Vellas B, Veltman DJ, Völzke H, Walter H, Wardlaw JM, Wassink TH, Weale ME, Weinberger DR, Weiner MW, Wen W, Westman E, White T, Wong TY, Wright CB, Zielke RH, Zonderman AB, Martin NG, Van Duijn CM, Wright MJ, Longstreth WT, Schumann G, Grabe HJ, Franke B, Launer LJ, Medland SE, Seshadri S, Thompson PM, Ikram MA. Novel genetic loci associated with hippocampal volume. Nat Commun. 2017 Jan 18;8:13624. doi: 10.1038/ncomms13624. PMID: 28098162; PMCID: PMC5253632.

  13. MIR4255; GeneCard.org

  14. LINC01377, GeneCards.org

  15. CASC17, GeneCards.org

  16. LINC02497, GeneCards.org

  17. Demontis, Walters, Martin, Mattheisen, Als, Agerbo, Baldursson, Belliveau, Bybjerg-Grauholm, Bækvad-Hansen, Cerrato, Chambert, Churchhouse, Dumont, Eriksson, Gandal, Goldstein, Grasby, Grove, Gudmundsson, Hansen, Hauberg, Hollegaard, Howrigan, Huang, Maller, Martin, Martin, Moran, Pallesen, Palmer, Pedersen, Pedersen, Poterba, Poulsen, Ripke, Robinson, Satterstrom, Stefansson, Stevens, Turley, Walters, Won H, Wright; ADHD Working Group of the Psychiatric Genomics Consortium (PGC); Early Lifecourse & Genetic Epidemiology (EAGLE) Consortium; 23andMe Research Team, Andreassen, Asherson, Burton, Boomsma, Cormand, Dalsgaard, Franke, Gelernter, Geschwind, Hakonarson, Haavik, Kranzler, Kuntsi, Langley, Lesch, Middeldorp, Reif, Rohde, Roussos, Schachar, Sklar, Sonuga-Barke, Sullivan, Thapar, Tung, Waldman, Medland, Stefansson, Nordentoft, Hougaard, Werge, Mors, Mortensen, Daly, Faraone, Børglum, Neale (2018): Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet. 2019 Jan;51(1):63-75. doi: 10.1038/s41588-018-0269-7. PMID: 30478444; PMCID: PMC6481311. n = 55.374

  18. LINC00461, GeneCards.org

  19. MIR9–2, GeneCards.org

  20. LINC02060, GeneCards.org

  21. TMEM161B-AS1, GeneCards.org

  22. MIR3666, GeneCards.org

  23. LINC01288, GeneCards.org

  24. LINC01572, GeneCards.org

  25. Yunyu Xu, Shuangxiang Lin, Jiejie Tao, Xinmiao Liu, Ronghui Zhou, Shuangli Chen, Punit Vyas, Chuang Yang, Bicheng Chen, Andan Qian, Meihao Wang (2022): Correlation research of susceptibility single nucleotide polymorphisms and the severity of clinical symptoms in attention deficit hyperactivity disorder. Front. Psychiatry, 23 September 2022, Sec. Behavioral and Psychiatric Genetics. https://doi.org/10.3389/fpsyt.2022.1003542

  26. Akkaya C, Karadag M, Hangul Z, Sahin E, Isbilen E (2022): Evaluation of the Regulatory Role of Circadian Rhythm Related Long Non-Coding RNAs in ADHD Etiogenesis. J Atten Disord. 2022 Oct 18:10870547221130113. doi: 10.1177/10870547221130113. PMID: 36254757. n = 83

Diese Seite wurde am 24.05.2025 zuletzt aktualisiert.