9. Störungen des Dopaminsystems bei ADHS
ADHS vermittelt unserer Auffassung nach seine Symptome auf vergleichbare Weise wie chronischer Stress unter anderem durch Dopamin- und Noradrenalin-(Wirkungs-)Mangel.
Weiter kann frühkindlicher chronischer Stress unserer Auffassung nach ebenso wie genetisch, epigenetisch oder auf andere Weise bedingter Dopamin- und Noradrenalinmangel die Gehirnentwicklung beeinträchtigen, was zu ADHS-Symptomen führt. Siehe hierzu unter ⇒ Gehirnentwicklungsstörung und ADHS im Kapitel Entstehung.
- 9.1. Genetische Abweichungen mit dopaminergem Hintergrund bei ADHS
- 9.2. Veränderungen des Dopaminsystems bei ADHS, chronischem und akutem Stress
- 9.3. Lernprobleme durch Veränderungen des Dopaminsystems bei ADHS, chronischem und akutem Stress
- 9.4. Verschiedene dopaminerge Hypothesen zu ADHS
9.1. Genetische Abweichungen mit dopaminergem Hintergrund bei ADHS
Bei ADHS sind auffällig viele Polymorphismen (spezifische Genvarianten) an Genen beteiligt, die den Dopaminspiegel beeinflussen, z.B.:
- DRD21
- DRD31
- DRD4
- Die 7-repeat-Allel des DRD4 bewirkt, dass die Empfindlichkeit des D4-Dopaminrezeptor (DRD4) für Dopamin verringert ist. Beim Subtyp ADHS-I (ohne Hyperaktivität) sei vorrangig der PFC betroffen.2 Vor dem Hintergrund, dass Hyperaktivität neurophysiologisch im Striatum entsteht und dort durch verringerte wie überhöhte Dopaminspiegel verursacht werden kann, wäre dies plausibel.
- DRD5
- DAT1
- Dopamintransporter (DAT) tragen im Striatum die Hauptlast des Dopaminabbaus.
- COMT
- Der Dopaminabbau im PFC erfolgt vornehmlich durch das Enzym COMT sowie NET, die im PFC mehr Dopamin wiederaufnehmen als Noradrenalin. Der COMT-Val/Val-Polymorphismus bewirkt einen 4-mal schnelleren Dopaminabbau im PFC. Dies könnte zu einem Dopamindefizit im PFC beitragen, wie es bei ADHS vermutet wird. Die meisten Genstudien fanden jedoch bislang keine Korrelation zwischen Varianten des COMT-Gens und ADHS.3 Überraschenderweise fand eine Studie bei Val/Val eine verbesserte Daueraufmerksamkeit bei Kindern mit ADHS. Val/Met oder Met/Met-Variante zeigten dagegen bei Kindern mit ADHS eine signifikant schlechtere Daueraufmerksamkeit als die Normwerte.4 Dies ließe sich auch damit erklären, dass ADHS mit einem Dopaminüberschuss im PFC einherginge, da dann ein erhöhter Dopaminabbau den Dopaminspiegel in den Mittelbereich brächte, der mit optimaler kognitiver Fähigkeit einhergeht. Denn Dopaminüberschuss wie Dopaminmangel beeinträchtigen gleichermaßen.5. Dies kollidiert jedoch mit der Tatsache, dass Amphetaminmedikamente, die den Dopaminspiegel im PFC erhöhen, bei ADHS die Daueraufmerksamkeit verbessern können. 0,25 mg / kg Amphetamin verbesserte die physiologische Effizienz bei gesunden Val/Val-Genträgern (= erhöhter Dopaminabbau) und verschlechterte sie bei gesunden Met/Met-Genträgern (verlangsamter Dopaminabbau).6 Möglicherweise könnten solche Betroffenen aber auch AMP-Nonresponder sein.
- mb-COMT-Knockout-Mäuse (Mäuse ohne membrangebundenes COMT) zeigen einen erhöhten Dopaminspiegel im Striatum. Dies deutet darauf hin, dass mb-COMT auch im Striatum am Dopaminabbau beteiligt ist.7
9.2. Veränderungen des Dopaminsystems bei ADHS, chronischem und akutem Stress
Die Fachliteratur geht davon aus, dass ADHS durch verringerte Dopamin- und Noradrenalinspiegel im PFC und Striatum / Nucleus accumbens gekennzeichnet ist,8 wie dies auch bei chronischem Stress der Fall ist. Akuter Stress ist dagegen durch erhöhte Dopaminspiegel in diesen Gehirnregionen geprägt.910 Die Symptome von Dopamin- und Noradrenalinmangel (ADHS, chronischer Stress) und Dopamin- und Noradrenalinüberschuss (akuter Stress) sind gleichwohl teilweise identisch und verwechselbar. Sie entstehen, wenn der für die Informationsübertragung im Gehirn optimale Neurotransmitterspiegel über- oder unterschritten wird (Inverted-U-Theorie).8 Betroffen sind vornehmlich der dlPFC (Arbeitsgedächtnis – Exekutivfunktionen), das Striatum (Motivation und motorische Inhibition) sowie das Cerebellum (Zeitverarbeitung).
Es gibt allerdings auch Tiermodelle mit überhöhtem Dopaminspiegel, die ADHS-Symptome zeigen. Die DAT-KO-Maus zeigt zwar drastisch erhöhte basale Dopaminspiegel im Striatum, jedoch ist die phasische Dopaminausschüttung im Striatum verringert. Die DAT-KO-Maus (insbesondere die heterozygote Variante, bei der die DAT in etwa halbiert sind) zeigt nahezu das Vollbild an ADHS-Symptomen. Es gibt (selten) auch Menschen ohne oder mit sehr stark verringerten DAT. Diese zeigen indes weitere Symptome, die nicht ADHS-typisch sind (z.B. frühkindliche Parkinson-Dystonie) und werden daher selten mit ADHS und eher mit Cerebralparese fehldiagnostiziert. Viele Betroffene sterben bereits als Teenager.11 Ein Überschuss an extrazellulärem Dopamin führt durch Aktivierung von präsynaptischen D2-Autorepezptoren zu einer verminderten Produktion von Dopamin (und damit zu einer verringerten Einlagerung von Dopamin in die Vesikel) sowie zu einer Downregulierung oder Desensibilisierung von Dopaminrezeptoren, wodurch ein Mangel an phasischem Dopamin und ein Dopaminwirkmangel entsteht.12
Während akuter und chronischer Stress im Erwachsenenalter in der Regel reversible Neurotransmitterveränderungen bewirken, kann wiederholter akuter Stress oder chronischer Stress insbesondere in Phasen von Gehirnentwicklungsschüben dauerhafte Schäden auslösen. Besonders vulnerable Lebensalter sind ab Zeugung bis 3 Jahre und in der Pubertät. So kann ADHS eine Folge von schwerem chronischem Stress sein, der einen Dopaminmangel verursacht, der wiederum zu einer Gehirnentwicklungsstörung führt. ⇒ Gehirnentwicklungsstörung und ADHS Letztendlich dürfte es dem wachsenden Gehirn egal sein, ob das zur Entwicklung eigentlich benötigte und nun fehlende Dopamin aufgrund einer genetischen Grundlage, einer epigenetische vererbten Erfahrung der Vorfahren oder einer eigenen Stresserfahrung verringert ist.
Die bei ADHS dauerhaften Veränderungen der Neurotransmitterspiegel (Dopamin, Noradrenalin und andere) können durch vererbte Genvarianten ausgelöst werden (stressunabhängig), durch akute Umwelteinflüsse verursacht werden oder die Folge von Umwelteinflüssen sein, die epigenetische Veränderungen auslösen, die dann ebenfalls (über eine begrenzte Anzahl von Generationen) weitervererbt werden können. (⇒ Wie ADHS entsteht: Gene oder Gene + Umwelt)
In den ersten Lebensjahren entwickeln sich die wichtigsten Gehirnregionen und Neurotransmittersysteme. Eine stressbedingte Störung während dieser Entwicklung führt leicht zu dauerhaft bleibenden Fehlstellungen der Neurotransmittersysteme. Je nach genetischer Disposition sowie Art und Intensität der frühkindlichen Stressbelastungen kann die Störung der Reifung der dopaminergen Bahnen zeitverzögert nachgeholt werden.13
9.3. Lernprobleme durch Veränderungen des Dopaminsystems bei ADHS, chronischem und akutem Stress
Eine Zunahme phasischen Dopamins durch akuten Stress erhöht die Langzeitpotenzierung (LTP) mittels D1-Rezeptor-abhängiger Afferenzen des Hippocampus in den PFC,14 während chronischer Stress die LTP beeinträchtigt.15. Für die Induktion von LTP sind dopaminerg induzierte Veränderungen in der Phosphorylierung von Second-Messenger-Molekülen wie CREB und DARPP-32 erforderlich.1617 Deren Auswirkungen dauern weit über den Zeitraum der Dopamin-Rezeptor-Stimulation an.18
Elektrische Stimulation im PFC löst LTP aus, wenn tonisches Dopamin vorhanden ist. Fehlt dieses, wie nach mehrwöchigem chronischem Stress, wird stattdessen Langzeitdepression (LTD) ausgelöst.1918
9.4. Verschiedene dopaminerge Hypothesen zu ADHS
Es bestehen verschieden Erklärungsmodelle, wie das dopaminerge System bei ADHS verändert ist.20 Alle können die Verhaltensveränderungen von ADHS-Betroffenen erklären.
Wir vermuten, dass die verschiedenen Modelle sich nicht widersprechen, sondern dass sie - allein oder in Kombination - für verschiedene Betroffene zutreffen können.
Einige Studien deuten auf eine erhöhte Dopamintransporterdichte mit schneller Wiederaufnahme von synaptischem Dopamin, was zu einem Mangel an Dopamin im synaptischen Spalt führt.212223
Dass nach neueren Studien in dopaminergen Synapsen keine Dopaminrezeptoren sitzen, sondern GABA-Rezeptoren, und die Dopaminrezeptroen stattdessen räumlich um die Synapse herum angeordnet sind, ändert an der Bedeutung des DAT nichts, da diese auch außerhalb der Synapse sitzen.
Andere Studien gehen von einem Dopamin-Defizit aus, zusammen mit einer geringen Dopaminfreisetzung, die in unbehandelten Fällen mit einer niedrigen Transporterdichte verbunden ist.2425
Neuere PET-Bildgebungsstudien deuten darauf hin, dass die Transporterdichte bei medikamentennaiven ADHS-Betroffenen verringert ist und mit chronischer Behandlung mit Stimulanzien zunimmt.2627
9.4.1. Veränderung des Dopaminabbaus bei ADHS
Nach einer Auffassung haben ADHS-Betroffene zu viele DAT im Striatum, was mit dem Alter zurückgeht. Ein 50-jähriger hat nur noch halb so viele Dopamintransporter wie ein 10-jähriger.28 Das könnte zum Teil miterklären, warum sich ADHS bei einigen Betroffenen nach der Adoleszenz verliert und warum sich die Symptome im Erwachsenenalter verändern.
DAT treten vorwiegend im Striatum auf, wo sie die Hauptlast des Dopaminabbaus tragen.
Sofern im Striatum zu viele zu aktive DAT sind, wird dort das von der sendenden Nervenzelle in den synaptischen Spalt zur empfangenden Nervenzelle abgegebene Dopamin von diesen überaktiven (auf der sendenden Seite der Synapse sitzenden) Wiederaufnahmetransportern bereits wieder aufgenommen, bevor es von den Rezeptoren der empfangenden Nervenzelle aufgenommen werden konnte. So kommt es zu einem Mangel an Dopamin. Damit kommt das Signal, das durch das Dopamin übergeben werden sollte, nicht sauber bei der empfangenden Nervenzelle an.
ADHS-Medikamente, Nikotin (rauchen – wenn auch dysfunktional wie eine Droge) und Zink blockieren die DAT und reduzieren damit ihre Überaktivität.29 Um ADHS erfolgreich mit Zink zu behandeln, müssten jedoch Zinkmengen eingenommen werden, die anderweitig gesundheitsgefährdend sind (Zinkgrippe).
Untersuchungen über den Dopaminspiegel bei ADHS in anderen Bereichen als im Striatum sind bislang höchst inkonsistent und leiden an geringen Probandenzahlen.30
Eine Untersuchung (mit geringer Probandenzahl) fand einen leicht verringerten Dopaminmetabolismus im linken, medialen und rechten PFC bei ADHS.31 Eine weitere Untersuchung mit sehr geringer Probandenzahl fand erhöhte Dopaminwerte bei ADHS im rechten Mittelhirn.32
Eine andere Untersuchung deutet darauf hin, dass bei einem ADHS-HI-Tiermodell, der SHR, Dopamin im PFC verringert ist, während Noradrenalin erhöht ist.33
Auch weitere Untersuchungen deuten auf eine Unteraktivierung des PFC und anderer Gehirnbereiche außerhalb des Striatums hin. Siehe hierzu ⇒ Die neurologische Erklärung von Antriebs- und Motivationsproblemen, dort eingeklappt am Ende des Beitrags.
Bei chronischem Stress ist – je nach Entstehung und Konstellation – ein tonischer Dopaminmangel gegeben, ebenso wie bei frühem und lang anhaltendem Stress auch in Bezug auf die Stresshormone CRH und Cortisol und deren Rezeptoren eine Downregulation beschrieben wird.34
Obwohl eine Downregulation von CRH und Cortisol durch den Dexamethason- oder den kombinierten Dexamethason/CRH-Test überprüft werden kann, ist uns eine Anwendung dieses Tests für ADHS bislang nur in wenigen Berichten begegnet.
⇒ Cortisol bei ADHS
Bei ADHS und Autismus könnte Beta-Phenyletlyamin (ein Dopamin-Abbaustoff, aber kein Peptid) im Urin verringert sein.35
9.4.2. Veränderung der Dopaminsynthese bei ADHS?
Die Wirkung eines Dopaminmangels in PFC und Striatum kann neben einer verringerten Wirkung des Dopamins durch desensibilisierte Rezeptoren auch durch einen verringerten Dopaminspiegel entstehen. Dieser kann aus einem erhöhten Abbau von Dopamin (zu viel(e) oder zu aktive DAT, COMT, MAO-A etc.) oder aus einer mangelhaften Dopaminsynthese resultieren.
Verschiedene Untersuchungen zu der Frage, ob bei ADHS die Dopaminsynthese beeinträchtigt ist, kamen zu keinem eindeutigen Ergebnis.36
Zwei Untersuchungen fanden Hinweise auf eine erhöhte Synthese von Phenylalanin (einem Vorstoff zu Dopamin),3738 zwei Untersuchungen fanden Hinweise auf eine verringerte Phenylalaninproduktion bei ADHS3940 und eine Untersuchung konnte keine Unterschiede zwischen ADHS-Betroffenen und Nichtbetroffenen feststellen.41
9.4.3. Dopaminmangel im Striatum durch überaktivierten PFC?
9.4.3.1. DAT-Erhöhung im Striatum?
Viele Ergebnisse sind widersprüchlich, ob Dopamintransporter bei ADHS erhöht oder verringert sind:
- Erhöhte DAT bei Unaufmerksamkeit bei Jugendlichen mit ADHS und zerebralen Durchblutungsproblemen nach einer Frühgeburt.42
Erhöhte DAT gehen nach unserem Verständnis mit einem verringerten extrazellulären und erhöhten phasischen Dopaminspiegel einher. - 6 von 8 Studien fanden eine erhöhte DAT-Bindung bei (meist medikamentennaiven) Kindern und Erwachsenen mit ADHS-HI. 3 Studien fanden eine verminderte DAT-Bindung nach einer Methylphenidat-Behandlung.43
- Der 3′-UTR-, aber nicht der Intron8-VNTR-Genotyp des DAT-Gens korrelierte bei ADHS-HI-Betroffenen wie bei Nichtbetroffenen mit einer erhöhten DAT-Bindung. S3′-UTR-Polymorphismus des DAT-Gens und ADHS-HI-Status hatten einen additiven Effekt auf die DAT-Bindung.44
- Eine Studie fand Hinweise, die eher auf eine verringerte DAT-Zahl oder -Bindung bei ADHS hindeuten.45
-
DAT und D2- und D3-Rezeptoren zeigten bei ADHS-Betroffenen eine verringerte Bindung in24
-
DAT
- Nucleus accumbens
- Mittelhirn*
- Nucleus caudatus links
- D(2)/D(3)-Rezeptoren
- Nucleus accumbens*
- Mittelhirn*
- Nucleus caudatus links*
- Hypothalamus*
- Bei den mit * gekennzeichneten Regionen ergab sich eine Korrelation zu Aufmerksamkeitsproblemen
-
DAT
- Bestimmte Genpolymorphismen des DAT-Gens scheinen zu ADHS beizutragen. Häufig genannt werden 9R und 10R. Eine Untersuchung fand höhere Arbeitsgedächtnisaktivitäten bei 9R und 10R in verschiedenen Gehirnregionen bei ADHS.46
- Die Methylierung des Dopamintransporter-Gens im Blut könnte ebenfalls ein Indikator für die DAT-Dichte im Striatum sein und eines Tages als Instrument zur ADHS-Diagnose dienen.47
- Sauerstoffmangel bei der Geburt erhöht das ADHS-Risiko.48 Hypoxy-ischämische Zustände rund um die Geburt (z.B. Asphyxie) bewirken eine mangelhafte Versorgung des Gehirns mit Sauerstoff. Dies kann zu kognitiven Beeinträchtigungen führen, wobei deren Auftreten nach Sauerstoffmangel durch Dopamintransporter-Genpolymorphismen beeinflusst wird.49
Bei den meisten Untersuchungen wird nicht nach Subtypen differenziert. Die von uns zusammengetragenen Hinweise auf die unterschiedlichen (phasischen) Cortisolstressantworten der Subtypen würden es rechtfertigen, diese Frage unter Berücksichtigung des Subtyps zu untersuchen.
9.4.3.2. Hoher Dopaminspiegel im mPFC verringert Dopaminspiegel im Striatum
Akuter schwerer Stress erhöht den Dopaminspiegel im PFC kurzfristig (Dopaminstressantwort, phasisches Dopamin).
Chronischer und frühkindlicher Stress können je nach Stressor und Alter bei der Einwirkung den Dopaminspiegel im PFC dauerhaft erhöhen oder absenken (basale Dopaminspiegel, tonisches Dopamin). Mehr hierzu unter ⇒ Neurophysiologische Korrelate von Stress.
Der mPFC steuert das Zusammenspiel zwischen subcorticalen Regionen, die genussorientierte Handlungen kontrollieren. Eine erhöhte Erregbarkeit des mPFC bewirkt eine geringere dopaminerge Reaktion des Striatums. Dies hemmt den Antrieb des Verhaltens auf dopaminerge Stimulation. Eine dauerhafte Überaktivierung des mPFC führt zu einer stabilen Unterdrückung des (mit phasischem Dopamin kodierten) natürlichen belohnungsmotivierten Verhaltens und korreliert im Maß mit anhedonischem Verhalten. Zusammengefasst verringert viel Dopamin im (m)PFC den Dopaminspiegel im Nucleus accumbens50 und im Striatum insgesamt.51525354
Dieser Mechanismus könnte darauf beruhen, dass Dopamin im PFC die Aktivität glutamaterger Pyramidenzellen verringert und GABAerge Zellen anregt, was ebenfalls Glutamat inhibiert. Dies könnte zu einer starken Hemmung der glutamatergen Projektion in BA 9 und BA 10 führen, was eine Verringerung des Dopaminspiegels im ventralen und dorsalen Striatum auslöst.55
Umgekehrt führt eine Blockade von Dopaminrezeptoren im PFC zu einem enthemmten Dopaminumsatz im Striatum.54
Nach anderen Quellen korreliert Anhedonie mit einem verringerten Dopaminspiegel im mesocorticolimbischen System und im Nucleus accumbens.56 Die Dysfunktion des dopaminergen Systems bei Anhedonie soll mit Ketaminmedikamenten unmittelbar behebbar sein.57
(Tonischer) Dopaminmangel korreliert mit einer Erhöhung der Dopamintransporteranzahl.58
9.4.4. Verringertes tonisches und erhöhtes phasisches Dopamin im Nucleus caudatus bei ADHS
Eine MRT-Studie fand bei Erwachsenen mit ADHS-C Hinweise auf einen verringerten tonischen Dopaminspiegel im Ruhezustand und auf einen erhöhten phasischen Dopaminspiegel bei einer Flanker-Aufgabe, jeweils im rechten Nucleus caudatus (Teil des Striatums).59
Eine weitere Studie fand ebenfalls Hinweise auf erhöhtes phasisches Dopamin im Striatum und verknüpfte dies mit Symptomen von hoher Impulsivität und niedriger Inhibition.60
Ein weiteres Modell geht von verringertem tonischen Dopamin im Striatum als eine Ursache von ADHS aus.61
Diamond: Attention-deficit disorder (attention-deficit/hyperactivity disorder without hyperactivity): A neurobiologically and behaviorally distinct disorder from attention-deficit (with hyperactivity), Development and Psychopathology 17 (2005), 807–825, Seite 809 ↥ ↥
Diamond: Attention-deficit disorder (attention-deficit/hyperactivity disorder without hyperactivity): A neurobiologically and behaviorally distinct disorder from attention-deficit (with hyperactivity), Development and Psychopathology 17 (2005), 807–825, Seite 810, 811 ↥
Bonvicini, Faraone, Scassellati (2016): Attention-deficit hyperactivity disorder in adults: A systematic review and meta-analysis of genetic, pharmacogenetic and biochemical studies. Mol Psychiatry. 2016 Jul;21(7):872-84. doi: 10.1038/mp.2016.74. Erratum in: Mol Psychiatry. 2016 Nov;21(11):1643. PMID: 27217152; PMCID: PMC5414093. ↥
Bellgrove, Domschke, Hawi, Kirley, Mullins, Robertson, Gill ( The methionine allele of the COMT polymorphism impairs prefrontal cognition in children and adolescents with ADHD. Exp Brain Res. 2005 Jun;163(3):352-60. doi: 10.1007/s00221-004-2180-y. PMID: 15654584. ↥
Stitzinger (2006): Der Einfluss genetischer Variationen im COMT Gen auf kognitive Phänotypen. Dissertation. S. 32 ↥
Mattay, Goldberg, Fera, Hariri, Tessitore, Egan, Kolachana, Callicott, Weinberger (2003): Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci U S A. 2003 May 13;100(10):6186-91. doi: 10.1073/pnas.0931309100. PMID: 12716966; PMCID: PMC156347. ↥
Tammimaki, Aonurm-Helm, Zhang, Poutanen, Duran-Torres, Garcia-Horsman, Mannisto (2016): Generation of membrane-bound catechol-O-methyl transferase deficient mice with disctinct sex dependent behavioral phenotype. J Physiol Pharmacol. 2016 Dec;67(6):827-842. ↥
Arnsten, Pliszka (2011): Catecholamine influences on prefrontal cortical function: relevance to treatment of attention deficit/hyperactivity disorder and related disorders. Pharmacol Biochem Behav. 2011 Aug;99(2):211-6. doi: 10.1016/j.pbb.2011.01.020. PMID: 21295057; PMCID: PMC3129015. REVIEW ↥ ↥
Gresch, Sved, Zigmond, Finlay (1994); Stress-induced sensitization of dopamine and norepinephrine efflux in medial prefrontal cortex of the rat. J Neurochem. 1994 Aug;63(2):575-83. doi: 10.1046/j.1471-4159.1994.63020575.x. PMID: 8035182. ↥
Morrow, Redmond, Roth, Elsworth (2000): The predator odor, TMT, displays a unique, stress-like pattern of dopaminergic and endocrinological activation in the rat. Brain Res. 2000 May 2;864(1):146-51. doi: 10.1016/s0006-8993(00)02174-0. PMID: 10793199. ↥
Kurian, Gissen, Smith, Heales, Clayton (2011): The monoamine neurotransmitter disorders: an expanding range of neurological syndromes. Lancet Neurol. 2011 Aug;10(8):721-33. doi: 10.1016/S1474-4422(11)70141-7. PMID: 21777827. ↥
Müller, Candrian, Kropotov (2011): ADHS – Neurodiagnostik in der Praxis, Seite 84 ↥
Gurden, Takita, Jay (2000): Essential role of D1 but not D2 receptors in the NMDA receptor-dependent long-term potentiation at hippocampal-prefrontal cortex synapses in vivo. J Neurosci. 2000 Nov 15;20(22):RC106. doi: 10.1523/JNEUROSCI.20-22-j0003.2000. PMID: 11069975; PMCID: PMC6773154. ↥
Goto, Grace (2006): Alterations in medial prefrontal cortical activity and plasticity in rats with disruption of cortical development. Biol Psychiatry. 2006 Dec 1;60(11):1259-67. doi: 10.1016/j.biopsych.2006.05.046. PMID: 16950218. ↥
Greengard P, Allen PB, Nairn AC. Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron. 1999 Jul;23(3):435-47. doi: 10.1016/s0896-6273(00)80798-9. PMID: 10433257. REVIEW ↥
Hotte, Thuault, Dineley, Hemmings, Nairn, Jay (2007): Phosphorylation of CREB and DARPP-32 during late LTP at hippocampal to prefrontal cortex synapses in vivo. Synapse. 2007 Jan;61(1):24-8. doi: 10.1002/syn.20339. PMID: 17068779. ↥
Goto, Otani, Grace (2007): The Yin and Yang of dopamine release: a new perspective. Neuropharmacology. 2007;53(5):583-587. doi:10.1016/j.neuropharm.2007.07.007 REVIEW ↥ ↥
Matsuda, Marzo, Otani (2006): The presence of background dopamine signal converts long-term synaptic depression to potentiation in rat prefrontal cortex. J Neurosci. 2006 May 3;26(18):4803-10. doi: 10.1523/JNEUROSCI.5312-05.2006. PMID: 16672653; PMCID: PMC6674173. ↥
Caye, Swanson, Coghill, Rohde (2019): Treatment strategies for ADHD: an evidence-based guide to select optimal treatment. Mol Psychiatry. 2019 Mar;24(3):390-408. doi: 10.1038/s41380-018-0116-3. PMID: 29955166. ↥
Dougherty, Bonab, Spencer, Rauch, Madras, Fischman (1999): Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet. 1999 Dec 18-25;354(9196):2132-3. doi: 10.1016/S0140-6736(99)04030-1. PMID: 10609822. n = 6 ↥
Krause, Dresel, Krause, Kung, Tatsch, Lochmüller (2002): Elevated striatal dopamine transporter in a drug naive patient with Tourette syndrome and attention deficit/ hyperactivity disorder: positive effect of methylphenidate. J Neurol. 2002 Aug;249(8):1116-8. doi: 10.1007/s00415-002-0746-9. PMID: 12420715., n = 1 ↥
Spencer, Biederman, Madras, Dougherty, Bonab, Livni, Meltzer, Martin, Rauch, Fischman (2006): Further evidence of dopamine transporter dysregulation in ADHD: a controlled PET imaging study using altropane. Biol Psychiatry. 2007 Nov 1;62(9):1059-61. doi: 10.1016/j.biopsych.2006.12.008. PMID: 17511972; PMCID: PMC2715944. n = 47 ↥
Volkow, Wang, Kollins, Wigal, Newcorn, Telang, Fowler, Zhu, Logan, Ma, Pradhan, Wong, Swanson (2009): Evaluating dopamine reward pathway in ADHD: clinical implications. JAMA. 2009 Sep 9;302(10):1084-91. doi: 10.1001/jama.2009.1308. Erratum in: JAMA. 2009 Oct 7;302(13):1420. PMID: 19738093; PMCID: PMC2958516. ↥ ↥
Volkow, Wang, Newcorn, Telang, Solanto, Fowler, Logan, Ma Y, Schulz, Pradhan, Wong C, Swanson (2007): Depressed dopamine activity in caudate and preliminary evidence of limbic involvement in adults with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2007 Aug;64(8):932-40. doi: 10.1001/archpsyc.64.8.932. PMID: 17679638. ↥
Fusar-Poli, Rubia, Rossi, Sartori, Balottin (2012): Striatal dopamine transporter alterations in ADHD: pathophysiology or adaptation to psychostimulants? A meta-analysis. Am J Psychiatry. 2012 Mar;169(3):264-72. doi: 10.1176/appi.ajp.2011.11060940. PMID: 22294258. METASTUDIE, n = 342 ↥
Volkow, Wang GJ, Tomasi, Kollins, Wigal, Newcorn, Telang, Fowler, Logan, Wong CT, Swanson (2012): Methylphenidate-elicited dopamine increases in ventral striatum are associated with long-term symptom improvement in adults with attention deficit hyperactivity disorder. J Neurosci. 2012 Jan 18;32(3):841-9. doi: 10.1523/JNEUROSCI.4461-11.2012. PMID: 22262882; PMCID: PMC3350870. ↥
Krause, Krause (2014): ADHS im Erwachsenenalter, Schattauer ↥
Steinhausen, Rothenberger, Döpfner (2010): Handbuch ADHS, Seite 78 ↥
Solanto (2002): Dopamine dysfunction in AD/HD: integrating clinical and basic neuroscience research; Behavioural Brain Research 130 (2002) 65–71 ↥
Ernst, Zametkin, Matochik, Jons, Cohen (1998): DOPA Decarboxylase Activity in Attention Deficit Hyperactivity Disorder Adults. A [Fluorine-18]Fluorodopa Positron Emission Tomographic Study; The Journal of Neuroscience, August 1, 1998, 18(15):5901–5907; n = 40 ↥
Ernst, Zametkin, Matochik, Pascualvaca, Jons, Cohen (1999): High Midbrain [18F]DOPA Accumulation in Children With Attention Deficit Hyperactivity Disorder; Am J Psychiatry 1999; 156:1209–1215; n = 20 ↥
Russell (2002): Hypodopaminergic and hypernoradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder — the spontaneously hypertensive rat; Behavioural Brain Research, Volume 130, Issues 1–2, 10 March 2002, Pages 191-196, Behavioural Brain Research; https://doi.org/10.1016/S0166-4328(01)00425-9 ↥
ebenso: Stahl (2013): Stahl’s Essential Psychopharmacology, 4. Auflage, Chapter 12: Attention deficit hyperactivity disorder and its treatment, Seite 488 ↥
Kusaga (2002): [Decreased beta-phenylethylamine in urine of children with attention deficit hyperactivity disorder and autistic disorder]. [Article in Japanese]; No To Hattatsu. 2002 May;34(3):243-8. ↥
Bull-Larsen, Mohajeri (2019): The Potential Influence of the Bacterial Microbiome on the Development and Progression of ADHD. Nutrients. 2019 Nov 17;11(11). pii: E2805. doi: 10.3390/nu11112805. ↥
Aarts, Ederveen, Naaijen, Zwiers, Boekhorst, Timmerman, Smeekens, Netea, Buitelaar, Franke, van Hijum, Arias Vasquez (2017): Gut microbiome in ADHD and its relation to neural reward anticipation. PLoS One. 2017 Sep 1;12(9):e0183509. doi: 10.1371/journal.pone.0183509. eCollection 2017. ↥
Antshel, Waisbren (2003): Developmental timing of exposure to elevated levels of phenylalanine is associated with ADHD symptom expression. J Abnorm Child Psychol. 2003 Dec;31(6):565-74. ↥
Baker, Bornstein, Rouget, Ashton, van Muyden, Coutts (1991): Phenylethylaminergic mechanisms in attention-deficit disorder. Biol Psychiatry. 1991 Jan 1;29(1):15-22. ↥
Bornstein, Baker, Carroll, King, Wong, Douglass (1990): Plasma amino acids in attention deficit disorder. Psychiatry Res. 1990 Sep;33(3):301-6. ↥
Bergwerff, Luman, Blom, Oosterlaan (2016): No Tryptophan, Tyrosine and Phenylalanine Abnormalities in Children with Attention-Deficit/Hyperactivity Disorder. PLoS One. 2016 Mar 3;11(3):e0151100. doi: 10.1371/journal.pone.0151100. eCollection 2016. ↥
Lou, Rosa, Pryds, Karrebaek, Lunding, Cumming, Gjedde (2004): ADHD: increased dopamine receptor availability linked to attention deficit and low neonatal cerebral blood flow. Dev Med Child Neurol. 2004 Mar;46(3):179-83. doi: 10.1017/s0012162204000313. PMID: 14995087. n = 6 ↥
Spencer, Biederman, Madras, Faraone, Dougherty, Bonab, Fischman (2005): In vivo neuroreceptor imaging in attention-deficit/hyperactivity disorder: a focus on the dopamine transporter. Biol Psychiatry. 2005 Jun 1;57(11):1293-300. doi: 10.1016/j.biopsych.2005.03.036. PMID: 15950001. REVIEW ↥
Spencer, Biederman, Faraone, Madras, Bonab, Dougherty, Batchelder, Clarke, Fischman (2013): Functional genomics of attention-deficit/hyperactivity disorder (ADHD) risk alleles on dopamine transporter binding in ADHD and healthy control subjects. Biol Psychiatry. 2013 Jul 15;74(2):84-9. doi: 10.1016/j.biopsych.2012.11.010. PMID: 23273726; PMCID: PMC3700607. ↥
Volkow, Wang, Newcorn, Fowler, Telang, Solanto, Logan, Wong, Ma, Swanson, Schulz, Pradhan (2007): Brain dopamine transporter levels in treatment and drug naïve adults with ADHD. Neuroimage. 2007 Feb 1;34(3):1182-90. doi: 10.1016/j.neuroimage.2006.10.014. PMID: 17126039. n = 45 ↥
Pineau, Villemonteix, Slama, Kavec, Balériaux, Metens, Baijot, Mary, Ramoz, Gorwood, Peigneux, Massat (2019): Dopamine transporter genotype modulates brain activity during a working memory task in children with ADHD. Res Dev Disabil. 2019 Sep;92:103430. doi: 10.1016/j.ridd.2019.103430. ↥
Wiers, Lohoff, Lee, Muench, Freeman, Zehra, Marenco, Lipska, Auluck, Feng, Sun, Goldman, Swanson, Wang, Volkow (2018): Methylation of the dopamine transporter gene in blood is associated with striatal dopamine transporter availability in ADHD: A preliminary study. Eur J Neurosci. 2018 Aug;48(3):1884-1895. doi: 10.1111/ejn.14067. ↥
Banaschewski, Ursachen von ADHS, Neurologen und Psychiater im Netz ↥
Miguel, Pereira, Barth, de Mendonça Filho, Pokhvisneva, Nguyen, Garg, Razzolini, Koh, Gallant, Sassi, Hall, O’Donnell, Meaney, Silveira (2019): Prefrontal Cortex Dopamine Transporter Gene Network Moderates the Effect of Perinatal Hypoxic-Ischemic Conditions on Cognitive Flexibility and Brain Gray Matter Density in Children. Biol Psychiatry. 2019 Apr 3. pii: S0006-3223(19)31154-0. doi: 10.1016/j.biopsych.2019.03.983. ↥
Ironside, Kumar, Kang, Pizzagalli (2018): Brain mechanisms mediating effects of stress on reward sensitivity. Curr Opin Behav Sci. 2018 Aug;22:106-113. doi: 10.1016/j.cobeha.2018.01.016. PMID: 30349872; PMCID: PMC6195323. ↥
Ferenczi, Zalocusky, Liston, Grosenick, Warden, Amatya, Katovich, Mehta, Patenaude, Ramakrishnan, Kalanithi, Etkin, Knutson, Glover, Deisseroth (2016): Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science. 2016 Jan 1;351(6268):aac9698. doi: 10.1126/science.aac9698 ↥
Heinz (2000): Das dopaminerge Verstärkungssystem, Seite 10 ↥
Kolachana, Saunders, Weinberger (1995): Augmentation of prefrontal cortical monoaminergic activity inhibits dopamine release in the caudate nucleus: an in vivo neurochemical assessment in the rhesus monkey. Neuroscience. 1995 Dec;69(3):859-68. ↥
Louilot, Le Moal, Simon (1989): Opposite influences of dopaminergic pathways to the prefrontal cortex or the septum on the dopaminergic transmission in the nucleus accumbens. An in vivo voltammetric study. Neuroscience. 1989;29(1):45-56. ↥ ↥
Heinz (2000): Das dopaminerge Verstärkungssystem, Seite 107 ↥
Rodrigues, Leão, Carvalho, Almeida, Sousa (2010): Potential programming of dopaminergic circuits by early life stress. Psychopharmacology (Berl). 2011 Mar;214(1):107-20. doi: 10.1007/s00213-010-2085-3. ↥
Rincón-Cortés, Grace (2019): Antidepressant effects of ketamine on depression-related phenotypes and dopamine dysfunction in rodent models of stress. Behav Brain Res. 2020 Feb 3;379:112367. doi: 10.1016/j.bbr.2019.112367. PMID: 31739001; PMCID: PMC6948930. ↥
Brake, Sullivan, Gratton (2000): Perinatal Distress Leads to Lateralized Medial Prefrontal Cortical Dopamine Hypofunction in Adult Rats; Journal of Neuroscience 15 July 2000, 20 (14) 5538-5543 ↥
Badgaiyan, Sinha, Sajjad, Wack (2015): Attenuated Tonic and Enhanced Phasic Release of Dopamine in Attention Deficit Hyperactivity Disorder. PLoS One. 2015 Sep 30;10(9):e0137326. doi: 10.1371/journal.pone.0137326. PMID: 26422146; PMCID: PMC4589406. n = 44 ↥
Cherkasova, Faridi, Casey, O’Driscoll, Hechtman, Joober, Baker, Palmer, Dagher, Leyton, Benkelfat (2014): Amphetamine-induced dopamine release and neurocognitive function in treatment-naive adults with ADHD. Neuropsychopharmacology. 2014 May;39(6):1498-507. doi: 10.1038/npp.2013.349. PMID: 24378745; PMCID: PMC3988554. n = 33 ↥
Grace (2001): Psychostimulant actions on dopamine and limbic system function: relevance to the pathophysiology and treatment of ADHD In: Solanto, Arnsten, Castellanos (Herausgeber): Stimulant Drugs and ADHD: Basic and Clinical Neuroscience Oxford University Press: New York; 134–157; zitert nach Cherkasova, Faridi, Casey, O’Driscoll, Hechtman, Joober, Baker, Palmer, Dagher, Leyton, Benkelfat (2014): Amphetamine-induced dopamine release and neurocognitive function in treatment-naive adults with ADHD. Neuropsychopharmacology. 2014 May;39(6):1498-507. doi: 10.1038/npp.2013.349. PMID: 24378745; PMCID: PMC3988554. ↥