Header Image
Dopaminerge Störungen mit Endocannabinoid-Beteiligung

Inhaltsverzeichnis

Dopaminerge Störungen mit Endocannabinoid-Beteiligung

Endocannabinoide sind in eine Vielzahl von Störungsbildern involviert, darunter etliche, die typischerweise mit einem erhöhten (fett) oder verringerten (kursiv) oder verringerten oder erhöhten (kursiv und fett) Dopaminspiegel korrelieren:123

1. Endocannabinoide bei verschiedenen Störungsbildern

Störung Dopamin AEA 2-AG CB1R CB2R
ADHS DA extrazellulär verringert AEA erhöht45 FAAH-Hemmung verursacht ADHS bei SHR6 MAGL-Hemmung verursacht ADHS bei SHR6 CB1R an GABA-Terminalen im Striatum downreguliert7 CB1R-Agonist verbesserte Hyperaktivität/Impulsivität8 CB1R-Inversagonist verbesserte ADHS-Symptome 6
Cardiovaskuläre Störungen9
ASS101112131415161718 AEA verringert19 Endocannabinoide verringert20 FAAH-Hemmung verbessert bei Mäusen soziales Verhalten21 und repetitives Verhalten2221 Selektive MAGL-Hemmer verbessern repetitive und stereotype Verhaltensweisen und Hyperaktivität21 sowie Sozialverhalten12 CB2R-Antagonisten wie z.B. CBD hilfreich21
Parkinson2324 DA verringert AEA erhöht25 2-AG erhöht26 CB1R-Expression in Basalganglien erhöht272829 CB2R erhöht3031
Alzheimer3233 AEA-Erhöhung hilfreich3435 CB1R verringert36 CB2R erhöht37
Huntington33 verringerte bis völlig verlorene CB1R und D1R38
Multiple Sklerose39 AEA in Liquor erhöht, periphere Lymphozyten erhöht40 2-AG in Liquor und periphere Lymphozyten unverändert40
Fragiles-X-Syndrom39 FMRP fehlt, dadurch via DAGL-α 2-AG-Synthese gestört (je nach Hirnregion erhöht/verringert). 2-AG-Erhöhung in Tiermodell hilfreich41 durch MAGL-Inhibitor42 CB1R aufgrund Überstimulation verringert. CBD als negativer allosterischer CB1R-Modulator könnte hilfreich sein.43
amyotrophe Lateralsklerose
traumatische Hirnverletzungen
Schlaganfall
Epilepsie DA verringert AEA erhöht nach Krampfanfällen 2-AG erhöht nach Krampfanfällen
Glioblastom DA verringert
Angststörungen AEA verringert4445 AEA-Erhöhung hilfreich46 2-AG-Erhöhung hilfreich46 Übermäßige AEA-Spiegel können Angst via TRPV1R erhöhen, weshalb duale FAAH/TRPV1-Hemmer hilfreicher waren als selektive FAAH-Hemmer47 Selektive MAGL-Hemmer hilfreich21 CB2R-Antagonisten hilfreich48 wie z.B. CBD21
PTSD und fehlerhafte Löschung aversiver Erinnerungen49 verringert AEA verringert5051 AEA unverändert52 AEA-Stressantwort unverändert5354 2-AG verringert52 2-AG-Stressantwort verringert5354 CB1R erhöht5051
Depression5556 DA verringert AEA bei leichter Depression erhöht, bei schwerer eher unverändert45 AEA-Erhöhung hilfreich57 Fluoxetin verringerte AEA in limbischen Regionen57 Tianeptin erhöhte AEA im Hippocampus und dorsalen Striatum57 Imipramin erhöht Endocannabinoide im dorsalen Striatum57 Escitalopram erhöhte Endocannabinoide im Hippocampus und dorsalen Striatum ODER verringerte sie im Cortex und Cerebellum57 2-AG verringert57 bei Frauen mit schwerer Depression4544 2-AG tendenziell erhöht bei leichter Depression45 Fluoxetin erhöhte 2-AG im PFC57 Tianeptin erhöhte 2-AG im dorsalen Striatum und PFC57 Imipramin erhöht Endocannabinoide im dorsalen Striatum57 Escitalopram erhöhte Endocannabinoide im Hippocampus und dorsalen Striatum{ ODER verringerte sie im Cortex und Cerebellum57
Bipolare Störung58
Essstörungen596061
Psychose62 DA erhöht AEA verringert in CSF63 und Blut64
Schizophrenie Negativsymptome: DA verringert im PFC / Positivsymptome: DA erhöht im dorsomedialen Striatum65666768697071 AEA im Gehirn 8-fach72 bis 10-fach73 erhöht CB1R erhöht72

2. Cannabinoide bei Parkinson

Cannabinoide bei Parkinson

Parkinson entsteht durch eine schrittweise Degeneration dopaminerger Neuronen der Substantia nigra, was die dopaminerge Neurotransmission im Striatum immer weiter einschränkt.74
Möglicherweise ist eine gestörte Endocannabinoid-Signalübertragung in den Basalganglien Ursache für Parkinson. Cannabinoide werden zur Behandlung von Parkinson-Symptomen und zur Verzögerung der Parkinson-Entstehung diskutiert und getestet.75767778

  • CB1R-Agonisten
    • verringern den Tremor, der durch eine übermäßige Stimulation der subthalamischen Neuronen entsteht798081 über Cannabinoidrezeptoren auf Astrozyten im ventralen Horn des Rückenmarks82
      • auch im Tiermodell83
    • lindern Levodopa-induzierte Dyskinesien8485
  • Antioxidative Phytocannabinoide scheinen in Parkinson-Tiermodellen die Degeneration dopaminerger Neuronen von Parkinson zu hemmen86
    • andere Studien faden keine starke antioxidative Wirkung von Cannabinoiden87
  • CB2Rs sind an der Kontrolle motorischer Effekte beteiligt8889
  • Cannabinoide wirken neuroprotektiv909192 und hemmen die Parkinson-Entwicklung bei Parkinson-Tiermodellen93

Cannabiskonsum zeigte bei Parkinson in Studien

  • bei 45,9 %94 bis 78 %95 Verbesserungen durch Cannabis-Konsum
  • Motorik
    • verringerten Ruhetremor96 bei 31 %94
    • verringerte Bradykinesie96 bei 45 %94
    • geringere Steifheit96
    • keine verbesserte Motorik97 in Doppelblindstudien9899
    • keine Verbesserung in Bezug auf Levodopa-induzierte Dyskinesien in Doppelblindstudien9998
  • weniger Schmerzen96
  • verbesserten Schlaf96 durch Nabilon100
  • verringerte Angst durch Nabilon100

CBD bewirkte bei Parkinson

  • eine Verringerung der Parkinson-Gesamtwerte101
  • eine signifikante Verringerung psychotischer Symptome101
  • keine Verbesserung motorischer oder allgemeiner Symptome in Doppelblindstudie102101

In einem Parkinson-Tiermodell fanden sich deutlich erhöhte Mengen an TRPV1, was die erhöhte Schmerzempfindlichkeit bei Parkinson erklären könnte.103

3. Psychose-Risikofaktoren bei Cannabiskonsum

Besondere Psychose-Risikofaktoren bei Cannabis-Konsum:104105

  • häufiger Konsum
  • Konsum von Cannabis mit hohem Δ9-THC-Gehalt
  • früher Konsum (Adoleszenz)
  • familiäre Vorgeschichte von Psychosen
  • Psychose-Prodromalsymptome
    • Nervosität
    • Ängstlichkeit
    • Unruhe
    • Ängste oder Depressionen
    • Rückzug aus sozialen Bindungen
    • verringerte Lebensfreude und Leistungsfähigkeit
    • Bewältigung von Ausbildung oder Beruf eingeschränkt gegenüber früher
  • Träger des Val-Allels von COMT
  • Halluzinationen bei Cannabiskonsum106

4. Autismus und Endocannabinoidom

(Abschnitt unvollständig, in Bearbeitung)

Autismus korreliert mit:2112

  • AEA verringert
  • Oleoylethanolamid verringert
  • CB1R hochreguliert
  • CB2R hochreguliert

Als Behandungsoptionen im Hinblick auf das Endocannabinoidsystem werden erörtert:

  • Hemmung des Endocannabinoidabbaus21
    • FAAH-Inhibitoren
      • FAAH baut AEA und Oleoylethanolamid ab
      • FAAH-Hemmung hemmt diesen Abbau
    • Transient Receptor Potential Vanilloid 1 - Inhibitoren
    • MAGL-Inhibitoren
    • Diese Inhibitoren scheinen repetitive, stereotype und sensorische Verhaltensweisen zu verbessern und Beeinträchtigungen der Sozialkompetenz, Depressionen und Angstzustände zu lindern.
    • Nebenwirkungen:
      • Hemmung von FAAH und MAGL kann ADHS-ähnliche Verhaltensweisen hervorrufen107
        • diese können durch CB1-Inversagonisten rückgängig gemacht werden
  • Beeinflussung des metabotropen Glutamatrezeptors 5 zur Erhöhung des 2-AG-Spiegels21
  • EC-Gabe21
    • 2-AG
    • 1/2-Palmitoylglycerol
    • Palmitoylethanolamid (PEA)
      • PEA-Gabe verbesserte
        • repetitive und stereotype Verhaltensweisen sowie Sozialkompetenz bei Mäusen108109
        • Sozialverhalten bei Kindern mit ASS110
    • Verbesserung von ASS-Verhaltensweisen und von Entzündungswerten

Forschungsgegenstand einer möglichen ASS-Behandlung sind:

  • EC-Rezeptoren-Beeinflussung21
    • G-Protein-gekoppelter Rezeptor 55
    • Peroxisom-Proliferator-aktivierte Rezeptoren-alpha
    • Peroxisom-Proliferator-aktivierte Rezeptoren-gamma
    • möglicherweise Verbesserung von Hyperaktivität und repetitiven Verhaltensweisen
  • Cyclooxygenase-2/Prostaglandin-E2-Signalweg21
    • möglicherweise Verbesserung von Hyperaktivität und repetitiven Verhaltensweisen
  • Mikrobiota21
    • Muzin abbauende Bakterien verbessern ASD-bezogene Verdauungs-Symptome wie Überempfindlichkeiten und Entzündungen
      • Akkermansia
      • Ruminococcus
      • A. muciniphila
        • verbesserte in einem Mausmodell für das metabolische Syndrom die Darmpermeabilität und erhöhte 2-AG111
    • selektive Antibiotika gegen bestimmte Clostridium-Stämme
      • Verbesserung von Reizbarkeit und Aggressivität
    • Lactobacillus reuteri
      • Verbesserung sozialer und repetitiver Verhaltensweisen
  • Bei ASS mit ADHS und Zwangsstörungen21
    • Hemmung der CB1- und CB2-Rezeptoren
    • Bakteriengaben
      • Ruminococcaceae
      • Lachnospiraceae
    • Modulation der Häufigkeit entzündungshemmender Gattungen
      • Prevotella
      • Anaeroplasma
    • Modulation von Taxa, die mit der Darmgesundheit in Verbindung stehen
      • Roseburia

  1. Dawson D, Persad C (2021): Targeting the Endocannabinoid System in the Treatment of ADHD. Genet Mol Med. 2021;3(1): 1-7.

  2. Cristino L, Bisogno T, Di Marzo V (2020): Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol. 2020 Jan;16(1):9-29. doi: 10.1038/s41582-019-0284-z. PMID: 31831863. REVIEW

  3. Di Marzo V (2020): The endocannabinoidome as a substrate for noneuphoric phytocannabinoid action and gut microbiome dysfunction in neuropsychiatric disorders
. Dialogues Clin Neurosci. 2020 Sep;22(3):259-269. doi: 10.31887/DCNS.2020.22.3/vdimarzo. PMID: 33162769; PMCID: PMC7605024. REVIEW

  4. Brunkhorst-Kanaan N, Trautmann S, Schreiber Y, Thomas D, Kittel-Schneider S, Gurke R, Geisslinger G, Reif A, Tegeder I (2021): Sphingolipid and Endocannabinoid Profiles in Adult Attention Deficit Hyperactivity Disorder. Biomedicines. 2021 Sep 6;9(9):1173. doi: 10.3390/biomedicines9091173. PMID: 34572359; PMCID: PMC8467584.

  5. Centonze D, Bari M, Di Michele B, Rossi S, Gasperi V, Pasini A, Battista N, Bernardi G, Curatolo P, Maccarrone M (2009): Altered anandamide degradation in attention-deficit/hyperactivity disorder. Neurology. 2009 Apr 28;72(17):1526-7. doi: 10.1212/WNL.0b013e3181a2e8f6. PMID: 19398708. n = 30

  6. Ito Y, Tomizawa M, Suzuki K, Shirakawa Y, Ono H, Adachi K, Suzuki H, Shimomura K, Nabeshima T, Kamijima M (2020): Organophosphate Agent Induces ADHD-Like Behaviors via Inhibition of Brain Endocannabinoid-Hydrolyzing Enzyme(s) in Adolescent Male Rats. J Agric Food Chem. 2020 Feb 26;68(8):2547-2553. doi: 10.1021/acs.jafc.9b08195. PMID: 31995978.

  7. Castelli M, Federici M, Rossi S, De Chiara V, Napolitano F, Studer V, Motta C, Sacchetti L, Romano R, Musella A, Bernardi G, Siracusano A, Gu HH, Mercuri NB, Usiello A, Centonze D (2011): Loss of striatal cannabinoid CB1 receptor function in attention-deficit / hyperactivity disorder mice with point-mutation of the dopamine transporter. Eur J Neurosci. 2011 Nov;34(9):1369-77. doi: 10.1111/j.1460-9568.2011.07876.x. PMID: 22034972.

  8. Cooper, Williams, Seegobin, Tye, Kuntsi, Asherson (2017): Cannabinoids in attention-deficit/hyperactivity disorder: A randomised-controlled trial, European Neuropsychopharmacology, Volume 27, Issue 8, 2017, Pages 795-808, ISSN 0924-977X, https://doi.org/10.1016/j.euroneuro.2017.05.005. n = 30

  9. Chandy M, Jimenez-Tellez N, Wu JC (2025): The relationship between cannabis and cardiovascular disease: clearing the haze. Nat Rev Cardiol. 2025 Jan 23. doi: 10.1038/s41569-025-01121-6. PMID: 39849111. REVIEW

  10. Jana A, Nath A, Sen P, Kundu S, Alghamdi BS, Abujamel TS, Saboor M, Woon-Khiong C, Alexiou A, Papadakis M, Alam MZ, Ashraf GM (2024): Unraveling the Endocannabinoid System: Exploring Its Therapeutic Potential in Autism Spectrum Disorder. Neuromolecular Med. 2024 May 14;26(1):20. doi: 10.1007/s12017-024-08781-6. PMID: 38744725; PMCID: PMC11093854. REVIEW

  11. de Camargo RW, de Novais Júnior LR, da Silva LM, Meneguzzo V, Daros GC, da Silva MG, de Bitencourt RM (2022): Implications of the endocannabinoid system and the therapeutic action of cannabinoids in autism spectrum disorder: A literature review. Pharmacol Biochem Behav. 2022 Nov;221:173492. doi: 10.1016/j.pbb.2022.173492. PMID: 36379443. REVIEW

  12. Zou M, Liu Y, Xie S, Wang L, Li D, Li L, Wang F, Zhang Y, Xia W, Sun C, Wu L (2021): Alterations of the endocannabinoid system and its therapeutic potential in autism spectrum disorder. Open Biol. 2021 Feb;11(2):200306. doi: 10.1098/rsob.200306. PMID: 33529552; PMCID: PMC8061688.

  13. Carbone E, Manduca A, Cacchione C, Vicari S, Trezza V (2021): Healing autism spectrum disorder with cannabinoids: a neuroinflammatory story. Neurosci Biobehav Rev. 2021 Feb;121:128-143. doi: 10.1016/j.neubiorev.2020.12.009. PMID: 33358985. REVIEW

  14. Nezgovorova V, Ferretti CJ, Taylor BP, Shanahan E, Uzunova G, Hong K, Devinsky O, Hollander E (2021): Potential of cannabinoids as treatments for autism spectrum disorders. J Psychiatr Res. 2021 May;137:194-201. doi: 10.1016/j.jpsychires.2021.02.048. PMID: 33689997. REVIEW

  15. Zou M, Li D, Li L, Wu L, Sun C (2019): Role of the endocannabinoid system in neurological disorders. Int J Dev Neurosci. 2019 Aug;76:95-102. doi: 10.1016/j.ijdevneu.2019.03.002. PMID: 30858029. REVIEW

  16. Zamberletti E, Gabaglio M, Parolaro D (2017): The Endocannabinoid System and Autism Spectrum Disorders: Insights from Animal Models. Int J Mol Sci. 2017 Sep 7;18(9):1916. doi: 10.3390/ijms18091916. PMID: 28880200; PMCID: PMC5618565. REVIEW

  17. Yeh ML, Levine ES (2017): Perspectives on the Role of Endocannabinoids in Autism Spectrum Disorders. OBM Neurobiol. 2017;1(2):005. doi: 10.21926/obm.neurobiol.1702005. Epub 2017 Apr 27. PMID: 30854511; PMCID: PMC6407886.

  18. Chakrabarti B, Persico A, Battista N, Maccarrone M (2015): Endocannabinoid Signaling in Autism. Neurotherapeutics. 2015 Oct;12(4):837-47. doi: 10.1007/s13311-015-0371-9. PMID: 26216231; PMCID: PMC4604173. REVIEW

  19. Karhson DS, Krasinska KM, Dallaire JA, Libove RA, Phillips JM, Chien AS, Garner JP, Hardan AY, Parker KJ (2018): Plasma anandamide concentrations are lower in children with autism spectrum disorder. Mol Autism. 2018 Mar 12;9:18. doi: 10.1186/s13229-018-0203-y. PMID: 29564080; PMCID: PMC5848550.

  20. Aran A, Eylon M, Harel M, Polianski L, Nemirovski A, Tepper S, Schnapp A, Cassuto H, Wattad N, Tam J (2019): Lower circulating endocannabinoid levels in children with autism spectrum disorder. Mol Autism. 2019 Jan 30;10:2. doi: 10.1186/s13229-019-0256-6. PMID: 30728928; PMCID: PMC6354384.

  21. Campanale A, Siniscalco D, Di Marzo V (2025): The endocannabinoidome-gut microbiome-brain axis as a novel therapeutic target for autism spectrum disorder. J Biomed Sci. 2025 Jul 2;32(1):60. doi: 10.1186/s12929-025-01145-7. PMID: 40605060; PMCID: PMC12220735. REVIEW

  22. Wu HF, Lu TY, Chu MC, Chen PS, Lee CW, Lin HC (2020): Targeting the inhibition of fatty acid amide hydrolase ameliorate the endocannabinoid-mediated synaptic dysfunction in a valproic acid-induced rat model of Autism. Neuropharmacology. 2020 Jan 1;162:107736. doi: 10.1016/j.neuropharm.2019.107736. PMID: 31398381.

  23. Issa CTMI, Castro RD, Albuquerque KLGD (2025): Cannabis oil in treating Parkinson’s disease: improvement of motor and non-motor symptoms: a case report. Braz J Biol. 2025 Jan 17;84:e290305. doi: 10.1590/1519-6984.290305. PMID: 39841751.

  24. Han QW, Yuan YH, Chen NH (2020): The therapeutic role of cannabinoid receptors and its agonists or antagonists in Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry. 2020 Jan 10;96:109745. doi: 10.1016/j.pnpbp.2019.109745. PMID: 31442553. REVIEW

  25. Gubellini P, Picconi B, Bari M, Battista N, Calabresi P, Centonze D, Bernardi G, Finazzi-Agrò A, Maccarrone M (2002): Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission. J Neurosci. 2002 Aug 15;22(16):6900-7. doi: 10.1523/JNEUROSCI.22-16-06900.2002. PMID: 12177188; PMCID: PMC6757864.

  26. Mounsey RB, Mustafa S, Robinson L, Ross RA, Riedel G, Pertwee RG, Teismann P (2015): Increasing levels of the endocannabinoid 2-AG is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Exp Neurol. 2015 Nov;273:36-44. doi: 10.1016/j.expneurol.2015.07.024. PMID: 26244281; PMCID: PMC4654430.

  27. Lastres-Becker I, Cebeira M, de Ceballos ML, Zeng BY, Jenner P, Ramos JA, Fernández-Ruiz JJ (2001): Increased cannabinoid CB1 receptor binding and activation of GTP-binding proteins in the basal ganglia of patients with Parkinson’s syndrome and of MPTP-treated marmosets. Eur J Neurosci. 2001 Dec;14(11):1827-32. doi: 10.1046/j.0953-816x.2001.01812.x. PMID: 11860478.

  28. Mailleux P, Vanderhaeghen JJ (1993): Dopaminergic regulation of cannabinoid receptor mRNA levels in the rat caudate-putamen: an in situ hybridization study. J Neurochem. 1993 Nov;61(5):1705-12. doi: 10.1111/j.1471-4159.1993.tb09807.x. PMID: 7901331.

  29. Romero J, Berrendero F, Pérez-Rosado A, Manzanares J, Rojo A, Fernández-Ruiz JJ, de Yebenes JG, Ramos JA (2000): Unilateral 6-hydroxydopamine lesions of nigrostriatal dopaminergic neurons increased CB1 receptor mRNA levels in the caudate-putamen. Life Sci. 2000;66(6):485-94. doi: 10.1016/s0024-3205(99)00618-9. PMID: 10794065.

  30. Concannon RM, Okine BN, Finn DP, Dowd E (2015): Differential upregulation of the cannabinoid CB₂ receptor in neurotoxic and inflammation-driven rat models of Parkinson’s disease. Exp Neurol. 2015 Jul;269:133-41. doi: 10.1016/j.expneurol.2015.04.007. PMID: 25895887.

  31. Gómez-Gálvez Y, Palomo-Garo C, Fernández-Ruiz J, García C (2016): Potential of the cannabinoid CB(2) receptor as a pharmacological target against inflammation in Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry. 2016 Jan 4;64:200-8. doi: 10.1016/j.pnpbp.2015.03.017. PMID: 25863279.

  32. Navarro G, Borroto-Escuela D, Angelats E, Etayo Í, Reyes-Resina I, Pulido-Salgado M, Rodríguez-Pérez AI, Canela EI, Saura J, Lanciego JL, Labandeira-García JL, Saura CA, Fuxe K, Franco R (2018): Receptor-heteromer mediated regulation of endocannabinoid signaling in activated microglia. Role of CB1 and CB2 receptors and relevance for Alzheimer’s disease and levodopa-induced dyskinesia. Brain Behav Immun. 2018 Jan;67:139-151. doi: 10.1016/j.bbi.2017.08.015. PMID: 28843453.

  33. Fernández-Ruiz J, Romero J, Ramos JA (2015): Endocannabinoids and Neurodegenerative Disorders: Parkinson’s Disease, Huntington’s Chorea, Alzheimer’s Disease, and Others. Handb Exp Pharmacol. 2015;231:233-59. doi: 10.1007/978-3-319-20825-1_8. PMID: 26408163. REVIEW

  34. Oddi S, Scipioni L, Totaro A, Giacovazzo G, Ciaramellano F, Tortolani D, Leuti A, Businaro R, Armeli F, Bilkei-Gorzo A, Coccurello R, Zimmer A, Maccarrone M (2025): Fatty-acid amide hydrolase inhibition mitigates Alzheimer’s disease progression in mouse models of amyloidosis. FEBS J. 2025 Jan 16. doi: 10.1111/febs.17403. PMID: 39822137.

  35. Doumar H, Mostafi HE, Elhessni A, Ebn Touhami M, Mesfioui A (2024): Exploring the diversity of cannabis cannabinoid and non-cannabinoid compounds and their roles in Alzheimer’s disease: A review. IBRO Neurosci Rep. 2024 Dec 20;18:96-119. doi: 10.1016/j.ibneur.2024.12.011. PMID: 39866750; PMCID: PMC11763173. REVIEW

  36. Ramírez BG, Blázquez C, Gómez del Pulgar T, Guzmán M, de Ceballos ML (2005): Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci. 2005 Feb 23;25(8):1904-13. doi: 10.1523/JNEUROSCI.4540-04.2005. PMID: 15728830; PMCID: PMC6726060.

  37. Talarico G, Trebbastoni A, Bruno G, de Lena C (2019): Modulation of the Cannabinoid System: A New Perspective for the Treatment of the Alzheimer’s Disease. Curr Neuropharmacol. 2019;17(2):176-183. doi: 10.2174/1570159X16666180702144644. PMID: 29962346; PMCID: PMC6343203. REVIEW

  38. Glass M, Dragunow M, Faull RL (2000): The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience. 2000;97(3):505-19. doi: 10.1016/s0306-4522(00)00008-7. PMID: 10828533.

  39. Páez JA, Campillo NE (2019): Innovative Therapeutic Potential of Cannabinoid Receptors as Targets in Alzheimer’s Disease and Less Well-Known Diseases. Curr Med Chem. 2019;26(18):3300-3340. doi: 10.2174/0929867325666180226095132. PMID: 29484980. REVIEW

  40. Centonze D, Bari M, Rossi S, Prosperetti C, Furlan R, Fezza F, De Chiara V, Battistini L, Bernardi G, Bernardini S, Martino G, Maccarrone M (2007): The endocannabinoid system is dysregulated in multiple sclerosis and in experimental autoimmune encephalomyelitis. Brain. 2007 Oct;130(Pt 10):2543-53. doi: 10.1093/brain/awm160. PMID: 17626034.

  41. Jung KM, Sepers M, Henstridge CM, Lassalle O, Neuhofer D, Martin H, Ginger M, Frick A, DiPatrizio NV, Mackie K, Katona I, Piomelli D, Manzoni OJ (2012): Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X syndrome. Nat Commun. 2012;3:1080. doi: 10.1038/ncomms2045. PMID: 23011134; PMCID: PMC3657999.

  42. Pirbhoy PS, Jonak CR, Syed R, Argueta DA, Perez PA, Wiley MB, Hessamian K, Lovelace JW, Razak KA, DiPatrizio NV, Ethell IM, Binder DK (2021): Increased 2-arachidonoyl-sn-glycerol levels normalize cortical responses to sound and improve behaviors in Fmr1 KO mice. J Neurodev Disord. 2021 Oct 13;13(1):47. doi: 10.1186/s11689-021-09394-x. PMID: 34645383; PMCID: PMC8513313.

  43. Palumbo JM, Thomas BF, Budimirovic D, Siegel S, Tassone F, Hagerman R, Faulk C, O’Quinn S, Sebree T (2023): Role of the endocannabinoid system in fragile X syndrome: potential mechanisms for benefit from cannabidiol treatment. J Neurodev Disord. 2023 Jan 9;15(1):1. doi: 10.1186/s11689-023-09475-z. PMID: 36624400; PMCID: PMC9830713. REVIEW

  44. Ren SY, Wang ZZ, Zhang Y, Chen NH (2020): Potential application of endocannabinoid system agents in neuropsychiatric and neurodegenerative diseases-focusing on FAAH/MAGL inhibitors. Acta Pharmacol Sin. 2020 Oct;41(10):1263-1271. doi: 10.1038/s41401-020-0385-7. PMID: 32203086; PMCID: PMC7608191. REVIEW

  45. Hill MN, Miller GE, Ho WS, Gorzalka BB, Hillard CJ (2008): Serum endocannabinoid content is altered in females with depressive disorders: a preliminary report. Pharmacopsychiatry. 2008 Mar;41(2):48-53. doi: 10.1055/s-2007-993211. PMID: 18311684; PMCID: PMC3422568.

  46. Lutz B, Marsicano G, Maldonado R, Hillard CJ (2015): The endocannabinoid system in guarding against fear, anxiety and stress. Nat Rev Neurosci. 2015 Dec;16(12):705-18. doi: 10.1038/nrn4036. PMID: 26585799; PMCID: PMC5871913. REVIEW

  47. Micale V, Cristino L, Tamburella A, Petrosino S, Leggio GM, Drago F, Di Marzo V (2009): Anxiolytic effects in mice of a dual blocker of fatty acid amide hydrolase and transient receptor potential vanilloid type-1 channels. Neuropsychopharmacology. 2009 Feb;34(3):593-606. doi: 10.1038/npp.2008.98. PMID: 18580871.

  48. Busquets-Garcia A, Gomis-González M, Guegan T, Agustín-Pavón C, Pastor A, Mato S, Pérez-Samartín A, Matute C, de la Torre R, Dierssen M, Maldonado R, Ozaita A (2013): Targeting the endocannabinoid system in the treatment of fragile X syndrome. Nat Med. 2013 May;19(5):603-7. doi: 10.1038/nm.3127. PMID: 23542787.

  49. Hill MN, Campolongo P, Yehuda R, Patel S (2018): Integrating Endocannabinoid Signaling and Cannabinoids into the Biology and Treatment of Posttraumatic Stress Disorder. Neuropsychopharmacology. 2018 Jan;43(1):80-102. doi: 10.1038/npp.2017.162. PMID: 28745306; PMCID: PMC5719095. REVIEW

  50. Neumeister A, Normandin MD, Pietrzak RH, Piomelli D, Zheng MQ, Gujarro-Anton A, Potenza MN, Bailey CR, Lin SF, Najafzadeh S, Ropchan J, Henry S, Corsi-Travali S, Carson RE, Huang Y (2013): Elevated brain cannabinoid CB1 receptor availability in post-traumatic stress disorder: a positron emission tomography study. Mol Psychiatry. 2013 Sep;18(9):1034-40. doi: 10.1038/mp.2013.61. PMID: 23670490; PMCID: PMC3752332.

  51. Neumeister A, Seidel J, Ragen BJ, Pietrzak RH (2015): Translational evidence for a role of endocannabinoids in the etiology and treatment of posttraumatic stress disorder. Psychoneuroendocrinology. 2015 Jan;51:577-84. doi: 10.1016/j.psyneuen.2014.10.012. PMID: 25456347; PMCID: PMC4268027. REVIEW

  52. Hill MN, Bierer LM, Makotkine I, Golier JA, Galea S, McEwen BS, Hillard CJ, Yehuda R (2013): Reductions in circulating endocannabinoid levels in individuals with post-traumatic stress disorder following exposure to the World Trade Center attacks. Psychoneuroendocrinology. 2013 Dec;38(12):2952-61. doi: 10.1016/j.psyneuen.2013.08.004. PMID: 24035186; PMCID: PMC3870889.

  53. Gowatch LC, Evanski JM, Ely SL, Zundel CG, Bhogal A, Carpenter C, Shampine MM, O’Mara E, Mazurka R, Barcelona J, Mayo LM, Marusak HA (2024): Endocannabinoids and Stress-Related Neurospsychiatric Disorders: A Systematic Review and Meta-Analysis of Basal Concentrations and Response to Acute Psychosocial Stress. Cannabis Cannabinoid Res. 2024 Oct;9(5):1217-1234. doi: 10.1089/can.2023.0246. PMID: 38683635; PMCID: PMC11535454. REVIEW

  54. Crombie KM, Leitzelar BN, Brellenthin AG, Hillard CJ, Koltyn KF (2019): Loss of exercise- and stress-induced increases in circulating 2-arachidonoylglycerol concentrations in adults with chronic PTSD. Biol Psychol. 2019 Jul;145:1-7. doi: 10.1016/j.biopsycho.2019.04.002. PMID: 30978371.

  55. Bright U, Akirav I (2025): Cannabidiol Modulates Neuroinflammatory and Estrogen-Related Pathways in a Sex-Specific Manner in a Chronic Stress Model of Depression. Cells. 2025 Jan 10;14(2):99. doi: 10.3390/cells14020099. PMID: 39851527; PMCID: PMC11763596.

  56. Poleszak E, Wośko S, Sławińska K, Szopa A, Wróbel A, Serefko A (2018): Cannabinoids in depressive disorders. Life Sci. 2018 Nov 15;213:18-24. doi: 10.1016/j.lfs.2018.09.058. PMID: 30290188. REVIEW

  57. Smaga I, Bystrowska B, Gawliński D, Przegaliński E, Filip M (2014): The endocannabinoid/endovanilloid system and depression. Curr Neuropharmacol. 2014 Sep;12(5):462-74. doi: 10.2174/1570159X12666140923205412. PMID: 25426013; PMCID: PMC4243035.

  58. Arjmand S, Behzadi M, Kohlmeier KA, Mazhari S, Sabahi A, Shabani M (2019): Bipolar disorder and the endocannabinoid system. Acta Neuropsychiatr. 2019 Aug;31(4):193-201. doi: 10.1017/neu.2019.21. PMID: 31159897. REVIEW

  59. Scherma M, Fattore L, Castelli MP, Fratta W, Fadda P (2014): The role of the endocannabinoid system in eating disorders: neurochemical and behavioural preclinical evidence. Curr Pharm Des. 2014;20(13):2089-99. doi: 10.2174/13816128113199990429. PMID: 23829365. REVIEW

  60. Jager G, Witkamp RF (2014): The endocannabinoid system and appetite: relevance for food reward. Nutr Res Rev. 2014 Jun;27(1):172-85. doi: 10.1017/S0954422414000080. PMID: 24933167. REVIEW

  61. Bermudez-Silva FJ, Viveros MP, McPartland JM, Rodriguez de Fonseca F (2010): The endocannabinoid system, eating behavior and energy homeostasis: the end or a new beginning? Pharmacol Biochem Behav. 2010 Jun;95(4):375-82. doi: 10.1016/j.pbb.2010.03.012. PMID: 20347862. REVIEW

  62. Appiah-Kusi E, Wilson R, Colizzi M, Foglia E, Klamerus E, Caldwell A, Bossong MG, McGuire P, Bhattacharyya S (2020): Childhood trauma and being at-risk for psychosis are associated with higher peripheral endocannabinoids. Psychol Med. 2020 Aug;50(11):1862-1871. doi: 10.1017/S0033291719001946. PMID: 31422779.

  63. Mizrahi R (2016): Social Stress and Psychosis Risk: Common Neurochemical Substrates? Neuropsychopharmacology. 2016 Feb;41(3):666-74. doi: 10.1038/npp.2015.274. PMID: 26346639; PMCID: PMC4707841. REVIEW

  64. Bassir Nia A, Gibson CL, Spriggs SA, Jankowski SE, DeFrancisco D, Swift A, Perkel C, Galynker I, Honrao C, Makriyannis A, Hurd YL (2023): Cannabis use is associated with low plasma endocannabinoid Anandamide in individuals with psychosis. J Psychopharmacol. 2023 May;37(5):484-489. doi: 10.1177/02698811221148604. PMID: 36633290.

  65. Haddad NM, De Jesus LP, Serpa M, Van De Bilt M, Talib L, Costa A, Gattaz W, Loch AA (2024): Endocannabinoid system alterations in schizophrenia: association with cannabis use and antipsychotic medication. Eur Arch Psychiatry Clin Neurosci. 2024 Mar 19. doi: 10.1007/s00406-024-01788-x. PMID: 38502208.

  66. Kibret BG, Canseco-Alba A, Onaivi ES, Engidawork E (2023): Crosstalk between the endocannabinoid and mid-brain dopaminergic systems: Implication in dopamine dysregulation. Front Behav Neurosci. 2023 Mar 16;17:1137957. doi: 10.3389/fnbeh.2023.1137957. PMID: 37009000; PMCID: PMC10061032. REVIEW

  67. {Ferranti AS, Foster DJ (2022): Cannabinoid type-2 receptors: An emerging target for regulating schizophrenia-relevant brain circuits. Front Neurosci. 2022 Aug 11;16:925792. doi: 10.3389/fnins.2022.925792. PMID: 36033626; PMCID: PMC9403189. REVIEW

  68. Cortez IL, Rodrigues da Silva N, Guimarães FS, Gomes FV (2020): Are CB2 Receptors a New Target for Schizophrenia Treatment? Front Psychiatry. 2020 Oct 30;11:587154. doi: 10.3389/fpsyt.2020.587154. PMID: 33329132; PMCID: PMC7673393. REVIEW

  69. Koethe D, Pahlisch F, Hellmich M, Rohleder C, Mueller JK, Meyer-Lindenberg A, Torrey EF, Piomelli D, Leweke FM (2019): Familial abnormalities of endocannabinoid signaling in schizophrenia. World J Biol Psychiatry. 2019 Feb;20(2):117-125. doi: 10.1080/15622975.2018.1449966. PMID: 29521179.

  70. Fakhoury M (2017): Role of the Endocannabinoid System in the Pathophysiology of Schizophrenia. Mol Neurobiol. 2017 Jan;54(1):768-778. doi: 10.1007/s12035-016-9697-5. PMID: 26768595. REVIEW

  71. Little R, D’Mello D (2022): A Cannabinoid Hypothesis of Schizophrenia: Pathways to Psychosis. Innov Clin Neurosci. 2022 Jul-Sep;19(7-9):38-43. PMID: 36204167; PMCID: PMC9507146. REVIEW

  72. Giuffrida A, Leweke FM, Gerth CW, Schreiber D, Koethe D, Faulhaber J, Klosterkötter J, Piomelli D (2004): Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms. Neuropsychopharmacology. 2004 Nov;29(11):2108-14. doi: 10.1038/sj.npp.1300558. PMID: 15354183.

  73. Leweke FM, Giuffrida A, Koethe D, Schreiber D, Nolden BM, Kranaster L, Neatby MA, Schneider M, Gerth CW, Hellmich M, Klosterkötter J, Piomelli D (2007): Anandamide levels in cerebrospinal fluid of first-episode schizophrenic patients: impact of cannabis use. Schizophr Res. 2007 Aug;94(1-3):29-36. doi: 10.1016/j.schres.2007.04.025. PMID: 17566707.

  74. Latif S, Jahangeer M, Maknoon Razia D, Ashiq M, Ghaffar A, Akram M, El Allam A, Bouyahya A, Garipova L, Ali Shariati M, Thiruvengadam M, Azam Ansari M (2021): Dopamine in Parkinson’s disease. Clin Chim Acta. 2021 Nov;522:114-126. doi: 10.1016/j.cca.2021.08.009. PMID: 34389279. REVIEW

  75. Oikonomou P, Jost WH (2022): Commentary: Roles of the Cannabinoid System in the Basal Ganglia in Parkinson’s Disease. Front Cell Neurosci. 2022 May 9;16:897930. doi: 10.3389/fncel.2022.897930. PMID: 35614972; PMCID: PMC9124756.

  76. Wang M, Liu H, Ma Z (2022): Roles of the Cannabinoid System in the Basal Ganglia in Parkinson’s Disease. Front Cell Neurosci. 2022 Feb 21;16:832854. doi: 10.3389/fncel.2022.832854. PMID: 35264932; PMCID: PMC8900732. REVIEW

  77. Geresu B, Onaivi E, Engidawork E (2016): Behavioral evidence for the interaction between cannabinoids and Catha edulis F. (Khat) in mice. Brain Res. 2016 Oct 1;1648(Pt A):333-338. doi: 10.1016/j.brainres.2016.08.006. PMID: 27502029.

  78. Fernández-Ruiz J (2009): The endocannabinoid system as a target for the treatment of motor dysfunction. Br J Pharmacol. 2009 Apr;156(7):1029-40. doi: 10.1111/j.1476-5381.2008.00088.x. PMID: 19220290; PMCID: PMC2697699. REVIEW

  79. Báez-Cordero AS, Pimentel-Farfan AK, Peña-Rangel T, Rueda-Orozco PE (2020): Unbalanced Inhibitory/Excitatory Responses in the Substantia Nigra Pars Reticulata Underlie Cannabinoid-Related Slowness of Movements. J Neurosci. 2020 Jul 22;40(30):5769-5784. doi: 10.1523/JNEUROSCI.0045-20.2020. PMID: 32532888; PMCID: PMC7380975.

  80. Sañudo-Peña MC, Tsou K, Walker JM (1999): Motor actions of cannabinoids in the basal ganglia output nuclei. Life Sci. 1999;65(6-7):703-13. doi: 10.1016/s0024-3205(99)00293-3. PMID: 10462071. REVIEW

  81. Sañudo-Peña MC, Patrick SL, Khen S, Patrick RL, Tsou K, Walker JM (1998): Cannabinoid effects in basal ganglia in a rat model of Parkinson’s disease. Neurosci Lett. 1998 Jun 5;248(3):171-4. doi: 10.1016/s0304-3940(98)00368-1. PMID: 9654336.

  82. Carlsen EMM, Falk S, Skupio U, Robin L, Pagano Zottola AC, Marsicano G, Perrier JF (2021): Spinal astroglial cannabinoid receptors control pathological tremor. Nat Neurosci. 2021 May;24(5):658-666. doi: 10.1038/s41593-021-00818-4. PMID: 33737752; PMCID: PMC7610740.

  83. Loomis S, Samoylenko E, Virley D, McCreary AC (2024): Nabiximols (NBX) suppresses tremor in a rat Harmaline model of essential tremor. Exp Neurol. 2024 Dec;382:114988. doi: 10.1016/j.expneurol.2024.114988. PMID: 39368533.

  84. Morgese MG, Cassano T, Cuomo V, Giuffrida A (2007): Anti-dyskinetic effects of cannabinoids in a rat model of Parkinson’s disease: role of CB(1) and TRPV1 receptors. Exp Neurol. 2007 Nov;208(1):110-9. doi: 10.1016/j.expneurol.2007.07.021. PMID: 17900568; PMCID: PMC2128772.

  85. Ferrer B, Asbrock N, Kathuria S, Piomelli D, Giuffrida A (2003): Effects of levodopa on endocannabinoid levels in rat basal ganglia: implications for the treatment of levodopa-induced dyskinesias. Eur J Neurosci. 2003 Sep;18(6):1607-14. doi: 10.1046/j.1460-9568.2003.02896.x. PMID: 14511339.

  86. García-Arencibia M, González S, de Lago E, Ramos JA, Mechoulam R, Fernández-Ruiz J (2007): Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson’s disease: importance of antioxidant and cannabinoid receptor-independent properties. Brain Res. 2007 Feb 23;1134(1):162-70. doi: 10.1016/j.brainres.2006.11.063. PMID: 17196181.

  87. Russo C, Lavorgna M, Nugnes R, Orlo E, Isidori M (2021): Comparative assessment of antimicrobial, antiradical and cytotoxic activities of cannabidiol and its propyl analogue cannabidivarin. Sci Rep. 2021 Nov 18;11(1):22494. doi: 10.1038/s41598-021-01975-z. PMID: 34795379; PMCID: PMC8602723.

  88. Geresu B, Canseco-Alba A, Sanabria B, Lin Z, Liu QR, Onaivi ES, Engidawork E (2019): Involvement of CB2 Receptors in the Neurobehavioral Effects of Catha Edulis (Vahl) Endl. (Khat) in Mice. Molecules. 2019 Aug 30;24(17):3164. doi: 10.3390/molecules24173164. PMID: 31480324; PMCID: PMC6749201.

  89. Liu QR, Canseco-Alba A, Zhang HY, Tagliaferro P, Chung M, Dennis E, Sanabria B, Schanz N, Escosteguy-Neto JC, Ishiguro H, Lin Z, Sgro S, Leonard CM, Santos-Junior JG, Gardner EL, Egan JM, Lee JW, Xi ZX, Onaivi ES (2017): Cannabinoid type 2 receptors in dopamine neurons inhibits psychomotor behaviors, alters anxiety, depression and alcohol preference. Sci Rep. 2017 Dec 12;7(1):17410. doi: 10.1038/s41598-017-17796-y. PMID: 29234141; PMCID: PMC5727179.

  90. Chung YC, Bok E, Huh SH, Park JY, Yoon SH, Kim SR, Kim YS, Maeng S, Park SH, Jin BK (2011): Cannabinoid receptor type 1 protects nigrostriatal dopaminergic neurons against MPTP neurotoxicity by inhibiting microglial activation. J Immunol. 2011 Dec 15;187(12):6508-17. doi: 10.4049/jimmunol.1102435. PMID: 22079984.

  91. Chung YC, Shin WH, Baek JY, Cho EJ, Baik HH, Kim SR, Won SY, Jin BK (2016): CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinson’s disease. Exp Mol Med. 2016 Jan 22;48(1):e205. doi: 10.1038/emm.2015.100. PMID: 27534533; PMCID: PMC4892852.

  92. Wi R, Chung YC, Jin BK (2020): Functional Crosstalk between CB and TRPV1 Receptors Protects Nigrostriatal Dopaminergic Neurons in the MPTP Model of Parkinson’s Disease. J Immunol Res. 2020 Sep 28;2020:5093493. doi: 10.1155/2020/5093493. PMID: 33062722; PMCID: PMC7539109.

  93. Price DA, Martinez AA, Seillier A, Koek W, Acosta Y, Fernandez E, Strong R, Lutz B, Marsicano G, Roberts JL, Giuffrida A (2009): WIN55,212-2, a cannabinoid receptor agonist, protects against nigrostriatal cell loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Eur J Neurosci. 2009 Jun;29(11):2177-86. doi: 10.1111/j.1460-9568.2009.06764.x. PMID: 19490092; PMCID: PMC2755595.

  94. Venderová K, Růzicka E, Vorísek V, Visnovský P (2004): Survey on cannabis use in Parkinson’s disease: subjective improvement of motor symptoms. Mov Disord. 2004 Sep;19(9):1102-6. doi: 10.1002/mds.20111. PMID: 15372606. n = 339

  95. Finseth TA, Hedeman JL, Brown RP 2nd, Johnson KI, Binder MS, Kluger BM (2015): Self-reported efficacy of cannabis and other complementary medicine modalities by Parkinson’s disease patients in colorado. Evid Based Complement Alternat Med. 2015;2015:874849. doi: 10.1155/2015/874849. PMID: 25821504; PMCID: PMC4363882. n = 9

  96. Lotan I, Treves TA, Roditi Y, Djaldetti R (2014): Cannabis (medical marijuana) treatment for motor and non-motor symptoms of Parkinson disease: an open-label observational study. Clin Neuropharmacol. 2014 Mar-Apr;37(2):41-4. doi: 10.1097/WNF.0000000000000016. PMID: 24614667. n = 22

  97. Thanabalasingam SJ, Ranjith B, Jackson R, Wijeratne DT (2021): Cannabis and its derivatives for the use of motor symptoms in Parkinson’s disease: a systematic review and meta-analysis. Ther Adv Neurol Disord. 2021 May 25;14:17562864211018561. doi: 10.1177/17562864211018561. PMID: 34104218; PMCID: PMC8161868. METASTUDY, k = 3, n = 81

  98. Carroll CB, Bain PG, Teare L, Liu X, Joint C, Wroath C, Parkin SG, Fox P, Wright D, Hobart J, Zajicek JP (2004): Cannabis for dyskinesia in Parkinson disease: a randomized double-blind crossover study. Neurology. 2004 Oct 12;63(7):1245-50. doi: 10.1212/01.wnl.0000140288.48796.8e. PMID: 15477546. n = 19

  99. Mesnage V, Houeto JL, Bonnet AM, Clavier I, Arnulf I, Cattelin F, Le Fur G, Damier P, Welter ML, Agid Y (2004): Neurokinin B, neurotensin, and cannabinoid receptor antagonists and Parkinson disease. Clin Neuropharmacol. 2004 May-Jun;27(3):108-10. doi: 10.1097/00002826-200405000-00003. PMID: 15190231. n = 24

  100. Peball M, Krismer F, Knaus HG, Djamshidian A, Werkmann M, Carbone F, Ellmerer P, Heim B, Marini K, Valent D, Goebel G, Ulmer H, Stockner H, Wenning GK, Stolz R, Krejcy K, Poewe W, Seppi K; Collaborators of the Parkinson’s Disease Working Group Innsbruck (2020): Non-Motor Symptoms in Parkinson’s Disease are Reduced by Nabilone. Ann Neurol. 2020 Oct;88(4):712-722. doi: 10.1002/ana.25864. PMID: 32757413; PMCID: PMC7540547. n = 19

  101. Zuardi AW, Crippa JA, Hallak JE, Pinto JP, Chagas MH, Rodrigues GG, Dursun SM, Tumas V (2009): Cannabidiol for the treatment of psychosis in Parkinson’s disease. J Psychopharmacol. 2009 Nov;23(8):979-83. doi: 10.1177/0269881108096519. PMID: 18801821.

  102. Chagas MH, Zuardi AW, Tumas V, Pena-Pereira MA, Sobreira ET, Bergamaschi MM, dos Santos AC, Teixeira AL, Hallak JE, Crippa JA (2014): Effects of cannabidiol in the treatment of patients with Parkinson’s disease: an exploratory double-blind trial. J Psychopharmacol. 2014 Nov;28(11):1088-98. doi: 10.1177/0269881114550355. PMID: 25237116. n = 21

  103. Li M, Zhu M, Xu Q, Ding F, Tian Y, Zhang M (2020): Sensation of TRPV1 via 5-hydroxytryptamine signaling modulates pain hypersensitivity in a 6-hydroxydopamine induced mice model of Parkinson’s disease. Biochem Biophys Res Commun. 2020 Jan 22;521(4):868-873. doi: 10.1016/j.bbrc.2019.10.204. PMID: 31708101.

  104. Fernández-Ruiz J, Hernández M, Ramos JA (2010): Cannabinoid-dopamine interaction in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther. 2010 Jun;16(3):e72-91. doi: 10.1111/j.1755-5949.2010.00144.x. PMID: 20406253; PMCID: PMC6493786. REVIEW

  105. Kapler S, Adery L, Hoftman GD, Amir CM, Grigoryan V, Cooper ZD, Bearden CE (2024): Assessing evidence supporting cannabis harm reduction practices for adolescents at clinical high-risk for psychosis: a review and clinical implementation tool. Psychol Med. 2024 Jan;54(2):245-255. doi: 10.1017/S0033291723002994. PMID: 37882050. REVIEW

  106. Mason O, Morgan CJ, Dhiman SK, Patel A, Parti N, Patel A, Curran HV (2009): Acute cannabis use causes increased psychotomimetic experiences in individuals prone to psychosis. Psychol Med. 2009 Jun;39(6):951-6. doi: 10.1017/S0033291708004741. PMID: 19017430.

  107. Terajima T, Inoue H, Shimomura K, Iwasaki F, Sasaki A, Ito Y, Kamijima M, Tomizawa M (2023): Organophosphate agent action at the fatty acid amide hydrolase enhancing anandamide-induced apoptosis in NG108-15 cells. J Toxicol Sci. 2023;48(7):421-428. doi: 10.2131/jts.48.421. PMID: 37394655.

  108. Cristiano C, Pirozzi C, Coretti L, Cavaliere G, Lama A, Russo R, Lembo F, Mollica MP, Meli R, Calignano A, Mattace Raso G (2018): Palmitoylethanolamide counteracts autistic-like behaviours in BTBR T+tf/J mice: Contribution of central and peripheral mechanisms. Brain Behav Immun. 2018 Nov;74:166-175. doi: 10.1016/j.bbi.2018.09.003. PMID: 30193877.

  109. Bertolino B, Crupi R, Impellizzeri D, Bruschetta G, Cordaro M, Siracusa R, Esposito E, Cuzzocrea S (2017): Beneficial Effects of Co-Ultramicronized Palmitoylethanolamide/Luteolin in a Mouse Model of Autism and in a Case Report of Autism. CNS Neurosci Ther. 2017 Jan;23(1):87-98. doi: 10.1111/cns.12648. PMID: 27701827; PMCID: PMC6492645.

  110. Antonucci N, Cirillo A, Siniscalco D (2015): Beneficial Effects of Palmitoylethanolamide on Expressive Language, Cognition, and Behaviors in Autism: A Report of Two Cases. Case Rep Psychiatry. 2015;2015:325061. doi: 10.1155/2015/325061. PMID: 26491593; PMCID: PMC4602323.

  111. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, de Vos WM, Cani PD (2013): Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013 May 28;110(22):9066-71. doi: 10.1073/pnas.1219451110. PMID: 23671105; PMCID: PMC3670398.

Diese Seite wurde am 16.11.2025 zuletzt aktualisiert.