Liebe Leserinnen und Leser von ADxS.org, bitte verzeihen Sie die Störung.

ADxS.org benötigt in 2023 rund 33.500 €. In 2022 erhielten wir Spenden Dritter von rund 13.000 €. Leider spenden 99,8 % unserer Leser nicht. Wenn alle, die diese Bitte lesen, einen kleinen Beitrag leisten, wäre unsere Spendenkampagne für das Jahr 2023 nach einigen Tagen vorbei. Dieser Spendenaufruf wird 18.000 Mal in der Woche angezeigt, jedoch nur 40 Menschen spenden. Wenn Sie ADxS.org nützlich finden, nehmen Sie sich bitte eine Minute Zeit und unterstützen Sie ADxS.org mit Ihrer Spende. Vielen Dank!

Seit dem 01.06.2021 wird ADxS.org durch den gemeinnützigen ADxS e.V. getragen. Spenden an den ADxS e.V. sind steuerlich absetzbar (bis 300 € genügt der Überweisungsträger als Spendenquittung).

Falls Sie lieber etwas aktiv beitragen möchten, finden Sie hier Ideen zum Mitmachen oder zur tätigen Unterstützung.

15034€ von 33500€ - Stand 31.08.2023
44%
Header Image
Amphetaminmedikamente bei ADHS

Inhaltsverzeichnis

Amphetaminmedikamente bei ADHS

In den USA sind Amphetamin-Medikamente erhältlich als:1

  • Mischung aus D- und L-Amphetamin-Isomeren (racemisches Gemisch)
  • gemischte Sulfate und Saccharinate von D-L-Amphetamin-Isomeren (Adderall)
  • reines D-Amphetaminsulfat
  • D-Amphetamin als Lisdexamfetamin in lysingebundener Form (Vyvanse, Tyvanse)
  • racemisches Methamphetaminsulfat (Desoxyn)

In Deutschland mussten Amphetaminmedikamente lange aus Rohsubstanzen durch Apotheker hergestellt werden.2 Seit 2011 ist ein D-Amphetamin in Deutschland als Fertigmedikament erhältlich und für die Behandlung von ADHS zugelassen (Attentin), 2013 wurde ein D-Amphetamin als Lisdexamfetamin in lysingebundener Form (Elvanse) für die Behandlung von Kindern zugelassen. Seit Mai 2019 ist Elvanse Adult zur Behandlung von ADHS bei Erwachsenen zugelassen (30, 50, 70 mg). In 2023 wurden auch 20, 40, 60 mg für Erwachsene zugelassen.

In Österreich kann Elvanse verschrieben werden, wenn andere Medikamente unwirksam sind oder Nebenwirkungen zeigen. Dies muss der Arzt gegenüber der Kasse begründen.

Amphetaminmedikamente wirken bei Erwachsenen etwas besser als Methylphenidat und zeigen etwas geringere Nebenwirkungen.
Amphetaminmedikamente sind nach dem aktuellen europäischen Konsensus das ADHS-Mittel erster Wahl bei Erwachsenen (vor Methylphenidat), und bei Kindern und Jugendlichen das Mittel zweiter Wahl (nach Methylphenidat).34 Während der aktuelle Text der S3-Leitlinie von 2017 noch mitteilt, dass Lisdexamfetamin erst nach einer vorausgehenden Behandlung mit MPH zulassungskonform eingesetzt werden könne5, wird 2019 die S3-Leitlinie dahin gehend zitiert, dass als erste Option bei Erwachsenen mit ADHS eine Behandlung mit Psychostimulanzien empfohlen werde, unter welche die für Erwachsene zugelassenen Wirkstoffe Methylphenidat und Lisdexamfetamin fielen.67

Aufgrund des zu MPH abweichenden Responder/Nonresponderprofils eignen sich Amphetaminmedikamente besonders bei ADHS-Betroffenen, die auf MPH nicht ansprechen, und zwar eindeutig vor dem Einsatz von Nichtstimulanzien (z.B. noradrenergen Medikamenten oder trizyklischen Antidepressiva).8 Eine Zusammenfassung mehrerer Untersuchungen berichtet von 69 % Ansprechrate auf Amphetamin-Medikamente, 59 % Ansprechrate auf Methylphenidat. 87 % der Betroffenen hätten auf einen der beiden Wirkstofftypen angesprochen.9

Amphetaminmedikamente eignen sich daneben – anders als MPH – zur Mitbehandlung komorbider Dysphorie oder Depression.1011

Alle Amphetaminmedikamente wirken bei Erwachsenen laut einer Cochrane-Studie gleichermaßen gut, unabhängig von der spezifischen Medikamentenform.12 Damit unterscheiden sich Amphetaminmedikamente von Methylphenidat, bei dem bereits ein Wechsel zu einem anderen Methylphenidat-Präparat erhebliche individuelle Unterschiede zeigt.

Bei Studien zur Wirkung von Amphetamin muss immer beachtet werden, dass diese

  • AMP meist in deutlich höheren Dosen verwenden als bei einer ADHS-Medikamentierung
  • unretardiertes / nicht via Prodrug verlängert wirkendes AMP verwenden
  • häufig AMP injizieren, was nochmals eine sehr viel schnellere Verstoffwechselung bewirkt
  • diese 3 Faktoren sich in der Wirkung multiplizieren

Unzweifelhaft wirkt AMP in Medikamentenform anders als AMP in Drogenform.

1. Wirkstoffe von Amphetamin-Medikamenten

AMP hat ein chirales Zentrum mit zwei Enantiomeren:13

  • Levo-AMP (l-AMP)
    • Noradrenalinfreisetzung so stark wie oder stärker als d-AMP
  • Dextro-AMP (d-AMP)
    • höhere Dopaminfreisetzung als l-AMP

In der Folge bewirken die in den USA erhältlichen Amphetamin-Mischsalz-Präparate, die zu gleichen Teilen aus racemischem d,l-AMP-Sulfat, d,l-AMP-Aspartat-Monohydrat und zwei enantiomerenreinen d-AMP-Salzen (d-AMP-Sulfat und d-AMP-Saccharat) bestehen, was ein Verhältnis von 3:1 zwischen d-AMP- und l-AMP-Isomeren und Salzen ergibt, eine relativ größere Noradrenalinfreisetzung als reines d-AMP, bei absolut betrachtet immer noch größerer Dopamin- als Noradrenalinfreisetzung.

Für die ADHS-Behandlung relevant sind:

1.1. Dextroamphetamin (D-Amphetamin)

Dextroamphetamin wird auch Dexamphetamin oder Dextroamphetaminsulfat genannt.
Dextroamphetamin ist das rechtsdrehende (D-)Enantiomer von Amphetamin, gegenüber dem linksdrehenden Levoamphetamin (siehe unten).

D-Amphetaminmedikamente wirken 3- bis 4-mal stärker auf das zentrale Nervensystem als racemische Amphetaminmedikamente, bei gleichzeitig geringerer sympathikomimetischer Wirkung in der Peripherie, weshalb D-Amphetaminmedikamente bei der ADHS-Behandlung bevorzugt werden.14
D-Amphetamin ist nur in Bezug auf die Dopamintransporter potenter als L-Amphetamin, während die Wirkung auf Noradrenalintransporter in etwa gleich ist.15

Dies eröffnet die Möglichkeit, die Medikation dopaminerg zu betonen (Dexamphetamin) oder ausgeglichen dopaminerg und noradrenerg (Levoamphetamin) zu gestalten.

D-Amphetamin sei im Vergleich zu MPH aktivierender und daher bei ADHS-I bevorzugt zu empfehlen.16
Auch bei paralleler Dysthymie / Dysphorie / Depression ist es aufgrund der spürbaren serotonergen Wirkung17 oft besser wirksam als MPH.

1.1.1. D-Amphetamin ohne Lysinbindung

Handelsname: Attentin (D seit Ende 2011), Dexamin (Schweiz: als Magistralrezeptur), Dexedrin

Wirkdauer ca. 6 Stunden, sodass meist eine 2x tägliche Einnahme nötig ist.
Erhöhtes Missbrauchspotential, da keine Lysinbindung.

Medice (2017): Attentin® – Leitfaden für verschreibende Ärzte

1.1.2. D-Amphetamin aus Lisdexamfetamin (mit Lysinbindung)

Lisdexamfetamin (LDX) ist ein Prodrug von D-Amphetamin, das an L-Lysin zu einer an sich unwirksamen Substanz gebunden ist. Lisdexamfetamin ist also ein Wirkstoff, der erst im Körper zum eigentlich wirksamen Stoff, hier D-Amphetamin, umgewandelt wird. Dadurch besteht eine sehr geringe Missbrauchsgefahr.18

Das an Lysin gebundene Lisdexamfetamin (LDX) wird aus dem Dünndarm schnell in den Blutkreislauf aufgenommen. Des erfolgt durch aktiven Transport, vermutlich durch den Peptidtransporter 1 [PEPT1]. Die enzymatische Hydrolyse der Peptidbindung zur Freisetzung von d-Amphetamin im Blut erfolgt im Lysat und im zytosolischen Extrakt menschlicher Erythrozyten, nicht aber in der Membranfraktion vorhanden ist. Diese Umwandlung wird durch einenProteaseinhibitor-Cocktail, Bestatin und Ethylendiamintetraessigsäure stark gehemmt, was auch eine eine Aminopeptidase als Ursache der hydrolytische Spaltung der LDX-Peptidbindung hindeutet. Aminopeptidase B scheint es nicht zu sein.19

Durch den erforderlichen und langsamen Umwandlungsschritt von LDX zu d-AMP tritt die Wirkung ca. 1 Stunde später ein als bei Einnahme von d-AMP-Sulfat. Anders als LDX überwindet das pharmakologisch aktive d-AMP die Blut-Hirn-Schranke und gelangt ins ZNS, wo es seine Wirkung ausübt.13

Da die Wirkung über den gesamten Tag sehr gleichmäßig ist, entfallen die von MPH bekannten unangenehmen Reboundeffekte (kurzfristige erhöhte Unruhe bei Wirkende).
Die Wirkung entspricht D-Amphetamin. Eine Umrechnungstabelle von Dexamphetamin zu Elvanse findet sich bei ADHSpedia.20

Handelsnamen:

  • Elvanse (EU, seit Ende 2013, für Kinder, 20, 30, 40, 50, 60, 70 mg)21
  • Elvanse Adult (EU, seit 01.05.19, für Erwachsene, 30, 50, 70 mg)21. Seit 2023 sind in Deutschland auch 20, 40 und 60 mg zugelassen.
  • Vyvanse (USA) ist in Dosen von 10 mg bis 70 mg erhältlich22
  • Tyvense

Elvanse und Elvanse Adult sind dasselbe Medikament und daher (bei Zustimmung der Krankenkasse) austauschbar.

Elvanse ist in Deutschland erst seit 2013 als BtM eingestuft.
Österreich scheint das einzige Land zu sein, in dem Elvanse auch Stand 2023 nicht als Suchtgift klassifiziert ist.23

1.2. Levoamphetamin (L-Amphetamin)

Levoamphetamin (L-Amphetamin) ist das rein linksdrehende Isomer von Amphetamin.

L-Amphetamin ist in Bezug auf die Dopamintransporter weniger potent als D-Amphetamin, während die Wirkung auf Noradrenalintransporter in etwa gleich ist.15 Dadurch wirkt es etwas mehr noradrenerg als D-Amphetamin, jedoch immer noch überwiegend dopaminerg.24
L-Amphetamin erhöht Blutdruck und Puls stärker als D-Amphetamin.25

Uns ist kein in Europa zugelassenes L-Amphetamin-Fertigmedikament bekannt. Es müsste auf Einzelrezept in Apotheken hergestellt werden.

1.3. Gemischte Amphetaminsalze / Amphetamin-Derivate

  • Aderall (USA): 75 % Dextroamphetamin und 25 % Levoamphetamin
  • Evekeo (USA): 50 % Dextroamphetamin und 50 % Levoamphetamin

Amphetamin-Mischsalze sind eine Kombination verschiedener Stimulanzien:26

D-Amphetamin-Saccharat
D-Amphetamin-Sulfat
D,L-Amphetamin-Sulfat
D,L-Amphetamin-Aspartat-Monohydrat

(1.4. Fenetyllin)

  • Captagon (in D bis 2003; in Belgien bis 10); heute nicht mehr erhältlich

1.5. Methamphetamin

  • Desoxyn, USA

Methamphetamin ist in Deutschland nicht verschreibungsfähig.

2. Amphetamin-Medikamente wirken anders und an anderen Stellen des Gehirns als Methylphenidat

Amphetamin-Medikamente haben einen komplexeren Wirkmechanismus als Methylphenidat.
Die Darstellung der Wirkung von Amphetaminmedikamenten ist widersprüchlich.

Es wird zuweilen vertreten, dass Amphetaminmedikamente lediglich die Dopaminwiederaufnahme hemmen und Dopamin und Noradrenalin freisetzen. Fundiertere Darstellungen aus den USA (wo Amphetaminmedikamente häufiger verschrieben werden als in Europa und wo daher eine intensivere Auseinandersetzung damit erfolgt) nennen als Wirkung eine Wiederaufnahmehemmung von Dopamin- und Noradrenalintransportern und keine Freisetzung von Dopamin, Noradrenalin oder Serotonin.

In den USA erhalten Jugendlichen mit ADHS zu 52,9 % MPH und 39,3 % Amphetaminmedikamente als erstes verschriebenes Medikament. Im Verlauf der Behandlung ist MPH bei rund 40 % das primär verschriebene Medikament und 33 % AMP das primär verschriebene Medikament.27

Grundsätzlich sollen Amphetaminmedikamente intraneuronal wirken, während Methylphenidat und Atomoxetin extraneuronal wirken.28 Da Amphetaminmedikamente zumindest auch den Dopamintransporter und den D2-Autorezeptor adressieren, dürfte dies nicht haltbar sein.
AMP wirkt primär im Striatum sowie weiter im Cortex und im ventralen Tegmentum.29

Inzwischen existieren erste Computermodelle, die die Wirkung von ADHS-Medikamenten ernsthaft simulieren können. Ein Computermodell für die Simulation von Typ-1-Diabetes wurde von der FDA bereits als Ersatz von präklinischen Tierstudien zugelassen.30
Ein Modell zum Vergleich von MPH und AMP bei Kindern und Erwachsenen mit ADHS berücksichtigt die Wirkung auf 99 Proteine, die bei ADHS involviert sind.31

2.1. Dopamin bei Amphetaminmedikamenten

Die Dopaminerhöhung durch D-Amphetamin im PFC ist sehr viel ausgeprägter und zudem deutlich dosisabhängiger als bei MPH, mithin besser steuerbar.28
AMP soll32

  • tonischen Dopaminsignale verstärken, indem es die vesikulären Speicher leert und die nicht-exozytotische Freisetzung durch umgekehrten Transport fördert
  • phasische Dopaminsignale verstärken, indem es die vesikuläre Dopaminfreisetzung hochreguliert

2.1.1. Wirkung auf DAT

2.1.1.1. Dopamin(wieder)aufnahmehemmung via DAT und NET

Die Hemmung der Dopaminwiederaufnahme erhöht extrazelluäres Dopamin.

  • Amphetaminmedikamente blockieren die Dopamin- und Noradrenalintransporter auf eine andere Art und Weise als Methylphenidat. Während die Wiederaufnahmehemmung von MPH der von Antidepressiva gleicht, wirken Amphetaminmedikamente als kompetitiver Inhibitor und Pseudosubstrat auf Dopamin- und Noradrenalintransporter und binden an der gleichen Stelle an, an der die Monoamine an den Transporter binden, wodurch die NE- und DA-Wiederaufnahme ebenfalls gehemmt wird.33
  • Amphetaminmedikamente wirken wie Methylphenidat als Dopaminwiederaufnahmehemmer.34
  • Lisdexamfetamin wirkt primär als Dopaminwiederaufnahmehemmer.35 (anders: Stahl, s.o.: gleichermaßen als DA- und NE-WAH)
  • “Amphetamines can also stabilize dopamine and noradrenaline transporters in channel configurations, reverse flow through intracellular vesicular monoamine transporters, and cause internalization of dopamine transporters”36
  • D-Amphetamin hat in etwa die dreifache Affinität auf die Noradrenalintransporter (NET) zur Wiederaufnahmehemmung und die zweieinhalbfache Affinität auf Dopamintransporter (DAT) von racemischem Methylphenidat.28
2.1.1.1.1. DAT-Hemmung via PKC
  • AMP hemmt DAT möglicherweise via PKC37
    • Mehrere Proteinkinasen regulieren die DAT-Funktion3839
    • AMP erhöht die Aktivität der striatalen partikulären PKC über einen kalziumabhängigen Signalpfad40
    • PKC-Aktivierung führt zu einer Phosphorylierung im N-Terminal des striatalen Ratten-DAT der Ratte41
    • Eine Deletion der ersten 22 Aminosäuren von DAT37
      • verringert AMP-induzierten Dopamin-Efflux stark
      • (Wieder)Aufnahme bleibt unverändert
      • eliminiert den 32P -Einbau in DAT als Reaktion auf die PKC-Aktivierung39
    • Mutation der fünf N-terminalen Serine zu Alanin37
      • bewirkt starke Verringerung des AMP-induzierten Dopamin-Efflux
      • (Wieder)Aufnahme bleibt unverändert
    • Mutation der fünf N-terminalen Serine zu Aspartat (Nachahmung der Phosphorylierung)37
      • Efflux bleibt erhalten
      • vermutlich ist die Phosphorylierung eines oder mehrerer dieser fünf N-terminalen Serine für den AMP-induzierten Dopamin-Efflux erforderlich
    • Eine PKC-Aktivierung stimuliert die DAT-vermittelte Dopamin-Freisetzung37
    • PKC-Inhibitoren und die Herunterregulierung von PKC37
      • hemmen Efflux
      • lassen Dopamin-Aufnahme unverändert
2.1.1.2. Dopaminfreisetzung (DAT-Efflux) erhöht

Der erhöhte DAT-Efflux erhöht extrazelluäres Dopamin.

Amphetaminmedikamente setzen Dopamin in den Exztrazellulärraum frei.283534
Amphetamine wirken demnach nicht nur als Dopaminwiederaufnahmehemmer, sondern sie kehren darüber hinaus die DAT-Funktion um, sodass die DAT nicht nur kein Dopamin wiederaufnehmen, sondern es aus der Zelle ausschütten (Efflux).42
Es handelt sich dabei um neu synthetisiertes Dopamin. Unzweifelhaft ist, dass es sich nicht um eine Entleerung der Dopaminvorräte handelt, da Amphetaminmedikamente andernfalls keine dauerhafte Wirkung haben könnten.
Fraglich ist, ob es sich um Dopamin handelt, das zuvor in Vesikel eingelagert wurde. Unzweifelhaft ist, dass Amphetamindrogen (drogencharakteristisch: hohe Dosis, schnell appliziert, schnelles Wirkungsende) Dopamin freisetzen. Es ist fraglich, ob dies bei Amphetaminmedikamenten (charakteristisch: medikamentös = niedrig dosiert, langsam freigesetzt, langanhaltende Wirkung) ebenfalls der Fall ist, und falls ja, in welchem Maße dies gegeben ist.

2.1.1.2.1. Via VMAT2 bei hohen Dosen
  • (Erst) bei einer sehr hohen Dosierung als Droge wirken Amphetamine auch auf den Vesikulären Monoamintransporter 2 (VMAT2) für Dopamin und Noradrenalin und lösen dann eine sich kumulierende Dopaminausschüttung aus den synaptischen Vesikeln aus. Danach wird die hohe Dopaminmenge durch eine Wirkungsumkehr der Dopamintransporter in den synaptischen Spalt ausgekehrt. Dieser Mechanismus greift nicht bei der üblichen Dosierung als ADHS-Medikament.15 Anders formuliert: Amphetamine können in präsynaptische Monoamin-Vesikel eindringen und einen Efflux von Neurotransmittern in Richtung Synapse verursachen.43
  • Eine Gabe von 1 mg/kg AMP (injiziert) verursachte bereits einen Dopamin-DAT-Efflux, der bei 10 mg/kg deutlich höher war.44
2.1.1.2.2. Durch Erhöhung von intrazellulärem Ca2+

AMP erhöht intrazelluläres Ca2+, was die Phosphorylierung von DAT am N-Terminus des Transporters unterstützt. Phosphorylierung (durch CaMKII und möglicherweise auch durch PKCβ) erhöht Wahrscheinlichkeit für DAT-Efflux von zytoplasmatischem DA.45

2.1.1.2.3. Erhöhter DAT-Efflux via TAAR1
  • AMP wirkt via TAAR1 auf DAT
    Amphetamin ermöglicht dem Spurenamin-assoziierten Rezeptor 1 (TAAR1), den DAT-Transporter zu phosphorylieren. Dadurch wird die Wiederaufnahme von Dopamin unterbrochen und der DAT wird zur Ausschüttung von Dopamin angeregt (Efflux).43
  • AMP führt auch zu einer erhöhten intrazellulären Akkumulation von DAT46

2.1.2. Vesikuläre Freisetzung

  • AMP verringert die vesikuläre Freisetzung, weil AMP als lipophile schwache Base und als Substrat für den VMAT die Umverteilung von Dopamin aus den synaptischen Vesikeln in das Zytosol fördert, indem es den vesikulären pH-Gradienten zusammenbrechen lässt.47 Dadurch verringert AMP die Anzahl der pro Vesikel freigesetzten Dopamin-Moleküle.48
  • Amphetamin verringert zunächst die VMAT2, während langanhaltende Gabe diese erhöht.49. MPH erhöht VMAT2 per se.5051
  • AMP kann die vesikuläre Freisetzung hemmen, indem es indirekt D2-Autorezeptoren aktiviert. Die Aktivierung von D2-Autorezeptoren reguliert Kaliumkanäle, die ihrerseits die Wahrscheinlichkeit der exozytären Dopamin-Freisetzung regulieren.48
  • ein Computermodell ermittelte:52
    • eine maximale Dopaminfreisetzung bei 0,5-1,0 mg/kg AMP (niedriger bei geringeren wie bei höheren Dosen)
    • das meiste freigesetzte Dopamin resultierte aus durch AMP angeregter Dopaminneusynthese
      • das produzierte Dopamin wurde unmittelbar in DOPAC umgewandelt, das extrazellulär ausgeschieden wird
      • das Dopamin wurde nicht in Vesikel eingelagert
  • Nach Auffassung von Stahl schüttet AMP jedenfalls bei niedrigen Dosen kein Dopamin aus.15
  • AMP bewirkte bei Wildtyp-Mäusen in vitro wie in vivo einen allmählichen Anstieg des extrazellulären Dopamins im Striatum über ca. 30 Minuten um das 10-fache, wobei gleichzeitig der für die elektrisch stimulierte Ausschüttung zur Verfügung stehende Dopaminpool reduziert wird. Wurde das vesikuläre Dopamin zuvor durch Reserpin ins Cytosol ausgeschüttet, erhöhte sich das extrazelluläre Dopamin nicht; dennoch bewirkte AMP einen schnellen Dopaminanstieg binnen 5 Minuten. Bei DAT-KO-Mäusen stieg das extrazelluläre Dopamin nicht an, bei allerdings zugleich ebenfalls reduzierter elektrisch stimulierbarer Dopamin-Freisetzung. DAT sind mithin für die dopaminfreisetzende Wirkung von AMP erforderlich, nicht aber für die vesikelentleerende Wirkung. Die Dopamin-Entleerung der Vesikel ist der geschwindigkeitsbegrenzende Schritt für die AMP-Wirkung auf Dopamin.53
  • AMP (10 Mikrom) förderte die Ausschüttung von Dopamin aus Vesikeln, indem es die Affinität der Vesikel für die Dopamin-Aufnahme verringerte (von K(m) 0,8 auf K(m) 32 Mikrom). Die pro Puls freigesetzte Dopamin-Menge verringerte sich jedoch um 82 % (nach anderer Quelle um 25 bis 50 %). Der D2-Antagonist Sulpirid verringerte die Freisetzungshemmung, förderte also die Ausschüttung. Diese war bei D2-KO-Mäusen reduziert.
    Bei gehemmten D2-Autorezeptoren erhöhte AMP das extrazellulär freigesetzte Dopamin.54
  • Entleerung der vesikulären DA-Speicher durch schwach basische Wirkung auf den intravesikulären pH-Gradienten. Der intravesikuläre pH-Gradient ist zur Konzentration von DA erforderlich.
  • Unterschiedliche Wirkung auf freisetzungsbereite Vesikel und Reservepool-Vesikeln:32
    • reizabhängige Wirkung im dorsalen Striatum
      • vesikuläre Dopaminfreisetzung angeregt
        • durch einen Zug von kurzer Dauer
        • via freisetzungsbereitem Vesikel-Pool
      • Freisetzung verringert
        • durch einen Zug von langer Dauer
        • der auf Reservepool zugreift
      • diese gegensätzlichen Wirkungen der vesikulären Dopaminfreisetzung waren mit gleichzeitigen Anstieg der tonischen und phasischen Dopaminreaktionen verbunden
    • im ventralen Striatum
      • nur erhöhte vesikuläre Freisetzung und erhöhte phasische Signale

2.1.3. D2-Autorezeptor-Aktivierung

D-Amphetamin aktiviert D2-Dopamin-Autorezeptoren im Striatum.55

AMP (10 Mikrom) förderte die Ausschüttung von Dopamin aus Vesikeln, indem es die Affinität der Vesikel für die Dopamin-Aufnahme verringerte (von K(m) 0,8 auf K(m) 32 Mikrom). Die pro Puls freigesetzte Dopamin-Menge verringerte sich jedoch um 82 % (nach anderer Quelle um 25 bis 50 %). Der D2-Antagonist Sulpirid verringerte die Freisetzungshemmung, förderte also die Ausschüttung. Diese war bei D2-KO-Mäusen reduziert.
Bei gehemmten D2-Autorezeptoren erhöhte AMP das extrazellulär freigesetzte Dopamin.54

2.1.4. Erhöhung der Tyrosinhydroxylase

Amphetaminmedikamente scheinen einen aktivierenden Einfluss auf die Tyrosinhydroxylase im dorsalen Striatum und im Nucleus accumbens zu haben, der zu einem erhöhten L-Dopa-Spiegel führt, was jedoch offenbar nicht über eine Veränderung der Phosphorylierung der Tyrosinhydroxylase geschieht.56

2.1.5. Erhöhte DA-Feuerung in Nucleus caudatus / Putamen, verringerte DA-Feuerung im Nucleus accumbens

Eine hohe (deutlich über Medikamentendosis) D-Amphetamin-Gabe (2,5 bis 10 mg/kg bei der Ratte in die Bauchhöhle), führt zu einem erhöhten dopaminergen Feuern im Nucleus caudatus und Putamen und bewirkt fokussiert-repetitives (stereotypes) Verhalten.5758 Im Nucleus accumbens führen 7,5 mg / kg D-Amp dagegen zu einer Verringerung des dopaminergen Feuerns.57 Der D2-Antagonist Haloperidol (2 mg/kg) beendet die überhöhte Feuerung im Nucleus caudatus und Putamen und die verringerte Feuerung im Nucleus accumbens.57
D2-Antagonisten unterbinden die erhöhte Feuerung in Substantia nigra und VTA (in vivo).59

2.1.6. DA-Beeinflussung indirekt über Auswirkungen auf von anderen Hirnregionen ausgehende Dopaminzellen

Amphetamin scheint die Aktivität der Dopaminzellen indirekt über seine Auswirkungen auf die von anderen Hirnregionen ausgehenden Dopaminzellen zu beeinflussen.60

Amphetamin kann Dopamin-Neuronen durch Modulation der Glutamat-Neurotransmission erregen. Amphetamin hemmt stark die vom metabotropen Glutamatrezeptor (mGluR) vermittelten inhibierenden postsynaptischen Potenziale in Dopamin-Neuronen, hat aber keine Auswirkungen auf die vom ionotropen Glutamatrezeptor vermittelten exzitatorischen postsynaptischen Ströme. Amphetamin desensibilisiert die mGluR-vermittelte Hyperpolarisation durch:61

  • DA-Freisetzung
  • Aktivierung postsynaptischer alpha1-adrenerger Rezeptoren
  • Unterdrückung der InsP3-induzierten Kalziumfreisetzung aus internen Speichern
    Durch die selektive Unterdrückung der hemmenden Komponente der Glutamat-vermittelten Übertragung kann Amphetamin das Burst-Feuern von Dopamin-Neuronen fördern und so die phasische Freisetzung von Dopamin steigern.

2.2. Noradrenalin bei Amphetaminmedikamenten

2.2.1. Noradrenalinwiederaufnahmehemmung via NET

  • Amphetaminmedikamente blockieren die Dopamin- und Noradrenalintransporter auf eine andere Art und Weise als Methylphenidat. Während die Wiederaufnahmehemmung von MPH der von Antidepressiva gleicht, wirken Amphetaminmedikamente als kompetitiver Inhibitor und Pseudosubstrat auf Dopamin- und Noradrenalintransporter und binden an der gleichen Stelle an, an der die Monoamine an den Transporter binden, wodurch die NE- und DA-Wiederaufnahme ebenfalls gehemmt wird.3362
  • “Amphetamines can also stabilize dopamine and noradrenaline transporters in channel configurations, reverse flow through intracellular vesicular monoamine transporters, and cause internalization of dopamine transporters”36
  • D-Amphetamin hat in etwa ein Drittel der Wiederaufnahmehemmung auf die Noradrenalintransporter (NET) und Dopamintransprter (DAT) wie racemisches Methylphenidat.28
  • Amphetamin (wie auch Ephedrin) hemmen auch auf den intrazellulären Noradrenalintransporter, der Noradrenalin aus der Nervenzelle in die Vesikel (die Neurotransmitterspeicher) aufnimmt62

2.2.2. Noradrenalinfreisetzung

  • Ob Amphetamin in Medikamentendosierung noradrenalinausschüttend wirkt, wird ebenso wie bei Dopamin konträr diskutiert. Es gibt Stimmen dagegen15 wie dafür.3435
  • D-Amphetamin erhöht sekundär die Noradrenalinfreisetzung.55 Dies ist bei dopaminergen Medikamenten aufgrund der Umwandlung von Dopamin (zu ca. 5 – 10 %) in Noradrenalin stets der Fall.
  • Unzweifelhaft führen Amphetaminmedikamente nicht zu einer chronischen Entleerung der Noradrenalinvorräte im Sinne eines Mangelzustands. Es ist empirisch gesichert, dass Amphetaminmedikamente bei ADHS auch langfristig keine Gewöhnungseffekte bewirken

2,5 mg/kg AMP bewirkte bei Mäusen:63

  • stereotypes Verhalten (ein Zeichen stark erhöhten extrazellulären Dopamins); ebenso stark wie 20 mg/kg MPH
  • extrazelluläres Dopamin erhöht
  • extrazelluläres Noradrenalin erhöht
  • extrazelluläres Serotonin erhöht

2.2.3. Verringerung von Noradrenalinmetaboliten nur bei Respondern

  • In mehreren voneinander unabhängigen Studien wurde festgestellt, dass D-Amphetaminmedikamente den Metaboliten von Noradrenalin, MHPG, im Urin verringern. Der Rückgang von MPHG im Urin soll ein wichtiger Indikator für ein Anschlagen von Stimulanzien sein, der auf ein Absenken des Noradrenalinniveaus durch Dextroamphetaminmedikamente hindeutet.64](https://psycnet.apa.org/psycinfo/1982-21744-001)
  • Die Noradrenalinmetabolitenverringerung tritt zudem nur bei den ADHS-Betroffenen auf, die auf Dexamphetamin positiv ansprechen (Responder).65
  • Auch bei der Gabe von Methylphenidat zeigten nur die Responder einen signifikanten Rückgang von MPHG im Urin, während bei den Nonrespondern MPHG im Urin nicht zurückging.66
    Die Autoren schließen daraus auf ein verringertes Noradrenalinniveau bei ADHS.
  • Weiterhin wurde in mehreren Untersuchungen mit ADHS-Betroffenen festgestellt, dass Verhaltensverbesserungen proportional zum (mittels D-Amphetaminmedikament) verringerten Noradrenmetabolitenalinniveau standen.67

Im Gegensatz zur Verringerung der Metaboliten im Urin durch D-Amphetamin ist die durch D-Amphetamin vermittelte Noradrenalinerhöhung im PFC in etwa so ausgeprägt wie die von MPH, jedoch deutlich dosisabhängiger, mithin besser steuerbar.28

2.2.4. DA-Feuerung und DA-Bursting erhöht via Noradrenalin-α1-Rezeptoren

D-Amp (1 bis 2 mg/kg) wirkt via Alpha1-Adrenozeptoren68 (nicht aber via Alpha2- oder Beta-Adrenozeptoren) erhöhend auf das dopaminerge Feuern und Bursting in Substantia nigra und VTA (in vivo). Dieser adrenerge Wirkweg wird normalerweise von der durch D2-Autorezeptoren vermittelten Verringerung des dopaminergen Feuerns überdeckt und durch D2-Antagonisten oder durch gleichzeitige Gabe von D1/D5 und D2/D3/D4-Blockierern sichtbar. Der selektive Norepinephrin-Aufnahmeblocker Nisoxetin erhöhte die DA-Feuerungsrate nicht, jedoch die DA-Bursts.5969

D-Amphetamin scheint im PFC den Noradrenalin-α1-Rezeptor zu aktivieren, da der α1-Rezeptor-Antagonist Prazosin die Wirkung von D-Amphetamin im PFC vollständig neutralisierte. Dagegen scheint D-Amphetamin weder den α2-Rezeptor noch den β-Rezeptor zu adressieren, da die Wirkung von D-Amphetamin bei einer Blockade der α2- oder β-Rezeptoren bestehen blieb.70
D-Amphetamin fördert den Up-Zustand kortikaler Neuronen mittels Aktivierung von71

  • zentralen α1A-Adrenozeptoren
  • D1-Rezeptoren
  • D2-Rezeptoren
  • jedoch nicht jeweils durch D1- oder D2-Rezeptoren allein

Der Dopamin/Noradrenalin-Vorläufer L-DOPA förderte den Up-Zustand dagegen nicht.

Arousal ist mit einem erhöhten Up-Zustand verbunden, während Slow-Wave-Schlaf, Vollnarkose und ruhiger Wachzustand von einem oszillierenden Wechsel zwischen Up- und Down-Zuständen gekennzeichnet sind. Bei Erregung enden die Down-Zustände und die Up/Down-Oszillation wechselt in einen anhaltenden Up-Zustand.
Die Up/Down-Oszillationen scheint für die Gedächtniskonsolidierung relevant zu sein, während der Übergang in einen dauerhaften Up-Zustand für Arousal und Aufmerksamkeit erforderlich ist.71

2.3. Monoaminabbauhemmung via MAO

Amphetaminmedikamente wirken als MAO-Hemmer,7229 anders als niedrigdosiertes MPH. Ob hochdosiertes MPH als MAO-Hemmer wirkt, ist unbekannt.28

MAO ist ein Enzym, das Dopamin und Noradrenalin in der Zelle abbaut. MAO-Hemmer erhöhen damit die Menge des in der Zelle verfügbaren Dopamins und Noradrenalins. Da Dopamin und Noradrenalin zusätzlich weiterhin in der Nervenzelle synthetisiert werden, steigen die Noradrenalin- und Dopaminwerte in der Zelle weiter an. Dies führt zu einer Umkehr der Wirkung der Transporter (die eigentlich DA und NE aus dem synaptischen Spalt in die Zelle zurückführen), sodass diese NE und DA in den synaptischen Spalt ausschütten, auch ohne dass dies durch ein Nervensignal ausgelöst wird, das zu übertragen wäre.72 Dieser Effekt löse peripher Bluthochdruck und Herzfrequenzanstieg aus. Da dieser Wirkmechanismus indirekt an der Präsynapse erfolgt, werden Ephedrin und Amphetaminmedikamente auch “indirekte Sympathomimetika” genannt, während Wirkstoffe, die direkt an den Rezeptoren der Postsynapse wirken, Sympathomimetika genannt werden.72

2.4. Serotoninfreisetzung

Amphetaminmedikamente sollen in geringem Maße Serotonin freisetzen.7314 Auch hier ist unklar, ob dies wirklich auch bei Dosierung auf Medikamentenniveau der Fall ist, oder ob diese Wirkung nur bei der Dosierung als Drogen beschränkt ist. Stahl berichtet jedenfalls nicht von einer serotonergen Wirkung von Amphetaminmedikamenten.33

2,5 mg/kg AMP bewirkte bei Mäusen:63

  • stereotypes Verhalten (ein Zeichen stark erhöhten extrazellulären Dopamins); ebenso stark wie 20 mg/kg MPH
  • extrazelluläres Dopamin erhöht
  • extrazelluläres Noradrenalin erhöht
  • extrazelluläres Serotonin erhöht

Serotoninfreisetzung durch Amphetamindrogen

Amphetamindrogen (MDMA, MBDB) erhöhen zugleich die Serotoninfreisetzung. Es wird vermutet, dass die amphetamininduzierte Serotoninfreisetzung nicht nur die psychomotorische Aktivierung beeinflusst, sondern darüber hinaus das subjektive Wohlbefinden (bei Einnahme als Droge auch die Euphorie) beeinflusst.74 MDBD bewirkt fast keine Dopaminfreisetzung.

Eine durch 5 mg bzw. 10 mg / kg MDMA (= 10- bis 20-fach höhere Dosierung denn als Medikament) induzierte Hyperaktivität konnte durch eine vorherige Gabe von 2,5 und 10 mg / kg des selektiven Serotoninwiederaufnahmehemmer Fluoxetin unterbunden werden. Die gleiche Wirkung hatte Fluoxetin in Bezug auf die interaktive Wirkung von MDMA und P-Chloroamphetamin.75 Dies deutet darauf hin, das MDMA Hyperaktivität durch eine Serotoninerhöhung über den Serotonintransporter verursacht, der durch Fluoxetin als Serotoninwiederaufnahmehemmer blockiert wurde.

  • Es gibt Hinweise, dass eine erhöhte Serotoninausschüttung indirekt den Dopaminspiegel erhöht.75
  • Andere Quellen weisen auf eine Serotonin erhöhende Wirkung von Amphetaminsalzen aufgrund Hemmung der Monoaminoxidase hin.17
  • Amphetamin erhöht die c-Fos-Expression im mPFC, Striatum und Nucleus accumbens. Ein Serotonin-1A-Rezeptor-Agonist verringerte den c-Fos-Anstieg im mPFC und Striatum, nicht aber im Nucleus accumbens.76
  • MPH wirkt selbst agonistisch am 5-HT1A-Rezeptor.29

2.5. Wirkung auf HPA-Achse

2.5.1. ACTH erhöht

Lisdexamfetamin und d-Amphetamin erhöhten bei Gesunden signifikant die Plasmaspiegel u.a. von:77

  • ACTH

2.5.2. Corticosteroide erhöht

  • D-Amphetaminmedikamente wie Lisdexamphetaminmedikamente (Elvanse) erhöhen den Cortisolspiegel, nicht jedoch den Testosteronspiegel.77
  • Erhöht wurden
    • Glucocorticoide (wie durch Methylphenidat; noch stärker war die Erhöhung durch die Drogen MDMA oder LSD)
      • Cortisol
      • Cortison
      • Corticosterone
      • 11-Dehydrocorticosteron,
      • 11-Deoxycortisol
  • Unverändert blieben
    • Mineralocorticoide
      • Aldosteron
      • 11-Deoxycorticosteron

Die Erhöhung des Cortisolspiegels bewirkt eine stärkere Adressierung des Glucocorticoidrezeptors (GR) durch Cortisol. Cortisol bewirkt über GR die Wiederabschaltung der HPA-Achse am Ende der Stressreaktion.
Bei ADHS-HI und ADHS-C (beide mit Hyperaktivität) ist aufgrund der abgeflachten endokrinen Stressantwort der Nebenniere anzunehmen, dass die GR nicht ausreichend adressiert werden, um die HPA-Achse nach einer Stressreaktion wieder abzuschalten. Zudem besteht bei ADHS-HI (anders als bei ADHS-I) häufig eine mangelhafte GR-Funktion, die eine HPA-Achsen-Abschaltung zusätzlich erschwert.
Mehr hierzu bei Medikamente für ADHS unter Dexamethason bei ADHS. Wird nun durch AMP die Cortisolausschüttung erhöht, könnte dies bei ADHS-HI die Wiederabschaltung der HPA-Achse verbessern. Da AMP jedoch auch bei ADHS-I wirkt, dürfte der primäre Wirkmechanismus anders sein.

2.5.3. Steroidhormone erhöht

Lisdexamfetamin und d-Amphetamin erhöhten bei Gesunden signifikant die Plasmaspiegel u.a. von:77

  • Androgenen
    • Dehydroepiandrosteron
    • Dehydroepiandrosteronsulfat
    • Androstendion (Δ4-Androsten-3,17-dion)
    • Progesteron (nur bei Männern)

Unverändert blieb das Androgen

  • Testosteron

Da Aggression mit einem erhöhten Testosteron zu Cortisol-Verhältnis korreliert, wirken Amphetaminmedikamente aufgrund der relativen Erhöhung des Cortisolspiegels aggressionshemmend.
Mehr hierzu unter Neurophysiologische Korrelate von Aggression

Eine Studie an jugendlichen Rhesusaffen fand als Folge einer 12-monatigen AMP- oder MPH-Gabe in Medikamentendosierung, dass beide Wirkstoffe den Testosteronspiegel erhöhten, MPH noch deutlicher als AMP.78 Eine andere Studie an Rhesusaffen fand verringerte Testosteronspiegel bei MPH-Gabe.79

An Nagetieren wurde eine Verringerung des Testosteronspiegels durch Amphetamingabe beobachtet.8081

2.6. Sonstige Wirkungsweise auf Gehirnfunktionen

  • D-Amphetamin erhöht den Metabolismus im rechten Nucleus caudatus und vermindert ihn in der rechten Rolandi-Region sowie in rechts in anterioren inferioren frontalen Regionen.82
  • D-Amphetamin (wie auch L-Dopa, welches allerdings bei ADHS keinerlei Wirkungen hat, obwohl es dopaminerg wirkt) ist auch nach Schlaganfällen geeignet, die Hirnfunktionen wieder herzustellen, jedoch nur, wenn zugleich geeignete Trainingsmaßnahmen erfolgen.83 D-Amphetamin erhöht Dopamin, das neurotroph wirkt (die Neuroplastizität fördert). Dopaminerge Medikamente wie (D-)Amphetamin-Medikamente oder auch MPH können dadurch auch bei ADHS entsprechende Trainingsmaßnahmen (z.B. Neurofeedback, kognitive Verhaltenstherapie) unterstützen, indem sie die Einschränkungen der Lernfähigkeit verringern.
  • Methylphenidat und Amphetaminmedikamente erhöhen die Power von Alpha (bei Ratten), währende Atomoxetin und Guanfacin dies nicht tun.84
  • Lisdexamfetamin (Elvanse) bewirkt85
    • erhöhten Acetylcholinspiegel im Cortex
    • erhöhten Histaminspiegel im Cortex und Hippocampus (was parallel gegebenes Escitalopram nur im Hippocampus verhindert)

Amphetaminmedikamente sind damit nicht nur ein Ersatzmittel für Methylphenidat, sondern haben einen eigenen Anwendungsbereich.

2.7. Überblick zu AMP und Neurotransmittern

2.7.1. Bindungsaffinität von AMP, MPH, ATX an DAT / NET / SERT

Die Wirkstoffe Methylphenidat (MPH), d-Amphetamin (d-AMP), l-Amphetamin (l-AMP) und Atomoxetin (ATX) binden mit unterschiedlicher Affinität an Dopamintransporter (DAT), Noradrenalintransporter (NET) und Serotonintransporter (SERT). Die Bindung bewirkt eine Hemmung der Aktivität der jeweiligen Transporter.86
Die in der folgenden Tabelle genannten Werte von Easton et al. beziehen sich auf Werte im Synaptosom sowie auf den DAT im Striatum und den NET im PFC.

Bindungsaffinität: stärker bei kleinerer Zahl (KD = Ki) DAT NET SERT
MPH 34 - 20086, 34124 23824, 33986 > 10.00086
d-AMP (Elvanse, Attentin) 34 - 4186, 206 (Sulfat) 24 23,3 - 38,986, 54,8 (Sulfat)24 3.830 - 11.00086
l-AMP 13886, 1435 (Sulfat) 24 30,186, 259 (Sulfat)24 57.00086
ATX 1451 - 160086 235524 2,6 - 586, 20,624 48 - 7786
GBR-12909 40,224
Desipramin 4,924

2.7.2. Wirkung von AMP, MPH, ATX auf Dopamin / Noradrenalin je Gehirnregion

Die Wirkstoffe Methylphenidat (MPH), Amphetamin (AMP) und Atomoxetin (ATX) verändern extrazelluläres Dopamin (DA) und Noradrenalin (NE) in verschiedenen Gehirnregionen unterschiedlich stark. Tabelle basierend auf Madras,86 modifiziert.

PFC Striatum Nucleus accumbens
MPH DA +
NE (+)
DA +
NE +/- 0
DA +
NE +/- 0
AMP DA +
NE +
DA +
NE +/- 0
DA +
NE +/- 0
ATX DA +
NE +
DA +/- 0
NE +/- 0
DA +/- 0
NE +/- 0

3. Wirkung von Amphetaminmedikamenten im Vergleich zu MPH / Atomoxetin

Bei MPH-Nonrespondern wurde in einer randomisierten Doppelblindstudie mit n = 200 Probanden Lisdexamfetamin (EU: Elvanse) und Atomoxetin verglichen. Lisdexamfetamin wirkte in 2 von 6 Kategorien und in der Gesamtbeurteilung signifikant besser als Atomoxetin.87
Lisdexamfetamin (EU: Elvanse) wirkte in einer Doppelblindstudie zudem gut auf komorbid bestehende Depressionssymptome.88 Von MPH sind keine positiven Wirkungen auf Depressionssymptome bekannt.
Eine 2 Jahre andauernde Untersuchung bei Kindern und Jugendlichen (n = 314) ergab eine Responder-Rate zwischen 70 und 77 % bei guter Wirksamkeit und überschaubaren Nebenwirkungen.89

4. Wirkung auf ADHS-Symptome

Bei ADHS-Betroffenen, die auf D-Amphetaminmedikamente wie auf MPH positiv ansprechen, ist die Wirkung von D-Amphetaminmedikamenten zu MPH mindestens ebenbürtig90, nach unserer Erfahrung bei Erwachsenen sogar signifikant besser.

Zum Vergleich der Wirksamkeit einzelner Medikamente und Behandlungsformen siehe Effektstärke verschiedener Behandlungsformen von ADHS.

Amphetaminmedikamente sind nach dem aktuellen europäischen Konsensus das ADHS-Mittel erster Wahl bei Erwachsenen (vor Methylphenidat), und bei Kindern das Mittel zweiter Wahl (nach Methylphenidat).34

Amphetamin-Medikamente sollten außerdem stets dann versucht werden, wenn MPH nicht wirkt (Nonresponder).

4.1. ADHS-I (ohne Hyperaktivität)

MPH wirkt bei den meisten ADHS-Betroffenen stärker aktivierend und antriebssteigernd als AMP-Medikamente. Entgegenstehende Berichte91 decken sich nicht mit unserer Erfahrung.
Darstellungen in der Fachliteratur, wonach Amphetaminmedikamente für ADHS-I-Betroffene besser geeignet seien als MPH, unter anderem, weil ADHS-I-Betroffene überdurchschnittlich häufig AMP-Nonresponder seien,92 können wir aus unserer Erfahrung ebenfalls nicht bestätigen.
Wir kennen etliche ADHS-HI-Betroffene, denen Amphetaminmedikamente deutlich besser helfen als MPH und ADHS-I-Betroffene, die mit MPH besser zurechtkommen. Eine subtypenspezifische Wirkung von Amphetaminmedikamenten oder Methylphenidat können wir nach unserer Wahrnehmung nicht feststellen. Amphetaminmedikamente wirken nach unserer Erfahrung bei ADHS-HI ebenso gut wie bei ADHS-I.

4.2. Aufmerksamkeitssteuerung

ADHS-Betroffene haben ein verringerte extrinsische und intrinsische Motivierbarkeit. Sie benötigen z.B. höhere Belohnungen, um für etwas genauso motiviert zu sein wie Nichtbetroffene. Ist die Motivation bei ADHS-Betroffenen jedoch geweckt, sind die Aufmerksamkeit und ihre Steuerbarkeit von der Nichtbetroffener nicht mehr zuverlässig zu unterscheiden. Motivationsverschiebung in Richtung eigener Bedürfnisse erklärt Regulationsprobleme
Aufmerksamkeit korreliert u.a. mit einer Deaktivierung des Default Mode Networks (DMN). Stimulanzien sind in der Lage, die Aufmerksamkeitssteuerung von ADHS-Betroffenen (oder die Motivierbarkeit, woraus die Aufmerksamkeit folgt) der von Nichtbetroffenen anzugleichen, was sich dann auch an einer Normalisierung der DMN-Deaktivierbarkeit zeigt.93

Mehr zur abweichenden Funktion des DMN bei ADHS und dessen Normalisierung durch Stimulanzien samt weiterer Quellenangaben unter DMN (Default Mode Network) im Beitrag Neurophysiologische Korrelate von Hyperaktivität.
Die angegebenen Fundstellen beziehen sich auf die Wirkung von Methylphenidat. Es ist jedoch anzunehmen, dass die Wirkung durch Stimulanzien allgemein erzielt wird.

Betroffene berichten, dass MPH eine höhere Fokussierung ermögliche, während Amphetaminmedikamente (Elvanse) eher eine entspannte allgemeine Aufmerksamkeit schaffen und insgesamt etwas angenehmer wirken.

4.3. Komorbide Depression oder Dysthymie

Amphetaminmedikamente wirken wohl auch leicht serotonerg und haben damit bei komorbider Dysthymie oder Depression ein besonderes Einsatzgebiet, insbesondere da Serotoninwiederaufnahmehemmer (SSRI) bei ADHS (insbesondere bei ADHS-I) nachteilige Wirkungen haben können (siehe dort).

In Foren berichten etliche Betroffene von einer signifikanten antidepressiven Wirkung von Amphetaminmedikamenten, die sie von MPH nicht kennen.94 Dies deckt sich mit den Erfahrungen der uns bekannten Anwender.

Da Amphetamine stärker antriebssteigernd wirken können als MPH, kann dies eine bestehende suizidale Tendenz freisetzen, die bisher aufgrund der bestehenden Depression nicht ausgeführt wurde. Amphetaminmedikamente sollten daher bei (auch verdeckter) schwerer Depression mit Vorsicht eingesetzt werden.

Achtung: eine vermeintliche Dysthymie (leichte chronische Depression) bei ADHS-Betroffenen muss sauber von dem originären ADHS-Symptom der Dysphorie bei Inaktivität abgegrenzt werden.
Mehr hierzu unter Depression und Dysphorie bei ADHS im Abschnitt Differentialdiagnostik bei ADHS.

4.4. Komorbide Angststörungen / Depressionen

Komorbide Angststörungen oder Depressionen können durch Stimulanzien verstärkt werden, da Angst und Stimmungen durch die dopaminerge Aktivität des ventromedialen PFC in Verbindung mit dem limbischen System reguliert werden.33

4.5. Komorbide Schlafstörungen

Amphetaminmedikamente haben eine recht lange Wirkungsdauer (bis zu 13 Stunden). Eine zu späte Einnahme (weniger als 14 Stunden vor dem zu Bett gehen) könnte damit Einschlafprobleme verursachen. Manche Betroffene berichten dagegen bei Amphetaminmedikation von einer angenehmen Müdigkeit am Abend und dass sie keine Einschlafprobleme mehr hätten.

Studien zeigen, dass Amphetaminmedikamente die Schlafqualität bei ADHS insgesamt verbessern.9596

4.6. Impulsivität

Betroffene berichteten in Foren, dass MPH besser gegen Impulsivität wirke als Elvanse (Lisdexamfetamin).97

5. Ansprechrate (Responding / Nonresponding)

Ansprechen meint hier, ob eine Wirkung auf die ADHS-Symptome festzustellen ist. Betroffene, die auf ein Medikament nicht ausreichend ansprechen, nennt man Nonresponder.
Nonresponding bedeutet nicht, keine Wirkung zu haben, sondern lediglich, dass die Wirkung unter dem in der jeweiligen Studie festgelegten Maß der Symptomverbesserung bleibt.

Eine Studie berichtet eine Responderrate von 80 % (definiert als eine Verbesserung von mehr als 30 % der ADHS-RS-IV-Werte und CGI-I-Bewertungen von stark verbessert oder sehr stark verbessert).98
Eine Zusammenfassung mehrerer Untersuchungen berichtet von 69 % Ansprechrate auf Amphetamin-Medikamente und 59 % Ansprechrate auf Methylphenidat. 87 % der Betroffenen hätten auf einen der beiden Wirkstofftypen angesprochen.9
Eine 2 Jahre andauernde Untersuchung von L-Amphetamin-Medikamenten bei Kindern und Jugendlichen (n = 314) ergab eine Responder-Rate zwischen 70 und 77 % bei guter Wirksamkeit und überschaubaren Nebenwirkungen.89
Für MPH-Nonresponder ist daher sehr zu empfehlen, eine Medikation mit Amphetamin-Medikamenten (siehe 1.2.) zu testen, und umgekehrt.

Bei Trägern des COMT Val-158-Met Gen-Polymorphismus erhöht Amphetamin die Effizienz des PFC bei Probanden mit vermutlich geringem Dopaminspiegel im PFC. Bei Trägern des COMT Met-158-Met-Polymorphismus hatte Amphetamin dagegen keinen Effekt auf die kortikale Effizienz bei niedriger bis moderater Arbeitsgedächtnislast und verursachte eine Verschlechterung bei hoher Arbeitsspeicherlast. Individuen mit dem Met-158-Met-Polymorphismus scheinen ein erhöhtes Risiko für eine nachteilige Reaktion auf Amphetamin zu haben.99

6. Keine geschlechtsspezifischen Wirkungsunterschiede

Amphetaminmedikamente scheinen keine geschlechtsspezifischen Unterschiede in der Wirkung zu zeigen.100

7. Wirkung bei niedrigen Dosen beruhigend, bei hohen Dosen aktivierend

D-Amphetamin scheint ein biphasisches Wirkprofil zu haben. Niedrige Dosierungen von 0,5 bis 1 mg / kg bei Ratten (was ca. 0,2 bis 0,6 mg / kg bei Menschen entspricht), verringern die (Hyper-)aktivität, während höhere Dosen sie erhöhen.101

8. Dosierung Amphetamin-Medikamente oder MPH

Etwa 66 % aller ADHS-Betroffenen reagieren auf MPH wie auf Amphetamin-Medikamente gleich gut.
22 % reagieren besser auf Amphetamin-Medikamente als auf MPH.
11 % reagieren besser auf MPH als auf Amphetamin-Medikamente.102
Etwa 15 % der ADHS-Betroffenen sprechen auf den Wirkstoff D-Amphetamin am besten an.103

Nach diesem Ergebnis wäre es sinnvoller, die Therapie zunächst mit Amphetamin-Medikamenten zu versuchen und erst bei Nonresponding MPH als zweite Variante zu versuchen, da ADHS-Betroffene auf Amphetamin-Medikamente etwas besser ansprechen als auf MPH.

Hochbegabte mit ADHS (hier: IQ > 120) sollen besser auf Amphetamin-Medikamente ansprechen als Minderbegabte mit ADHS.104

Eine interessante Studie erörtert die Wirksamkeit von Lisdexamfetamin.105

Es empfiehlt sich ein Einstieg mit einer sehr geringen Dosierung, die erst langsam erhöht wird. Selbst wenn die optimale Dosierung bekannt wäre, würde eine sofortige optimale Dosierung möglicherweise eine Überforderung bewirken.106 Die Symptome von ADHS entstehen durch Signalübertragungsprobleme zwischen den Gehirnnerven, weil der Neurotransmitterspiegel (Dopamin, Noradrenalin) zu gering ist. Ein optimaler Neurotransmitterspiegel behebt die Signalweitergabeprobleme. Bei einem zu hohen Neurotransmitterspiegel aufgrund Überdosierung ist die Signalübertragung ebenso gestört wie bei einem zu niedrigen Spiegel.
Dies erklärt, warum zu Beginn niedrig dosiert und dann mit Geduld so lange höher dosiert werden sollte, bis eine Symptomverschlechterung festgestellt wird.

Da bei Erwachsenen die Anzahl der Dopamintransporter gegenüber 10-Jährigen auf die Hälfte sinkt, ist ein Einstieg mit einer wesentlich geringeren Dosierung als bei Kindern angeraten.

9. Wirkungsprofil (zeitlich) / Wirkdauer

In replizierten Studien über die Wirkdauer von Amphetaminmedikamenten wiesen Kinder eine kürzere Halbwertszeit von ca. 7 Stunden auf, Erwachsene dagegen eine längere von ca. 10 bis 12 Stunden.107

Der zeitliche Verlauf der Wirkung (Wirkungsprofil) hängt weniger von den Wirkstoffen als von der konkreten Medikamentenzusammensetzung ab.
Elvanse hat ein zeitlich sehr gestrecktes Wirkprofil ohne ausgeprägte Spitzen, sodass kaum Anflutungs- oder Reboundeffekte spürbar sind. Siehe: Grafische Darstellung des Elvanse-Wirkprofils. Die aus der Patentanmeldung von Shire stammende Grafik bezieht sich jedoch auf den Plasmaspiegel bei Ratten bei einer extrem hohen Dosis von 3 mg / kg.

Eine weitere Grafik zeigt die Wirkstoffverläufe bei 30 mg, 50 mg und 70 mg Elvanse, dort Seite 20.

Offen ist, inwieweit bei Lisdexamfetamin die Bindung des D-Amphetamins an Lysin wirklich zu einer abgeflachteren und verlängerten Konzentration von Amphetamin im Blutplasma führt. Eine Einmalgabe von (über den medizinisch sinnvollen Dosen liegenden) 40 mg D-Amphetamin oder 100 mg Lisdexamfetamin an gesunden Menschen zeigte keine relevanten Unterschiede der Amphetaminblutplasmakonzentration.108 Weiter weisen die Studiendaten wohl einen subjektiven Eindruck einer sanfteren und längeren Wirkung von Lisdexamfetamin seitens der Probanden aus, was die Autoren jedoch nicht wiedergeben. Eine weitere Einschränkung der Studie ist, dass die Probanden mit einer Einmalgabe behandelt wurden und keine Eindosierung an die getestete Dosierung erfolgte. Die Autoren zitieren selbst Studien, dass Amphetaminmedikamente Eingewöhnungsphasen benötigen bzw. (anfängliche) Gewöhnungseffekte zeigen. Die Ergebnisse der Studie sind daher vornehmlich pharmakologisch interessant, jedoch für die Praxis nur bedingt hilfreich.

Empirisch berichten Erwachsene recht einstimmig von einer sanfteren und verlängerten Wirkung von Lisdexamfetamin. Die Mehrheit nennt als Wirkdauer einer Einzeldosis 5 bis 7 Stunden. Ebenfalls recht einstimmig wird von einem sehr verlangsamten Wirkeintritt berichtet, wobei meist 1 bis 2 Stunden genannt werden.

Eine interne (und nicht repräsentative) Umfrage im adhs-forum.adx.org zur Wirkdauer von Elvanse (n= 80) sowie eine weitere Umfrage in einem Sub-Reddit zu Elvanse (n = 467) ergab folgendes Ergebnis (n = 547):

Wirkdauer einer Einzeldosis Elvanse % der Teilnehmer
5 Stunden und weniger 40,8 %
6 bis 7 Stunden 26,7 %
8 bis 9 Stunden 15,4 %
10 bis 11 Stunden 11 %
12 Stunden und mehr 6,2 %

Die Umfragen sind nicht repräsentativ (keine Berücksichtigung von Alter, Gewicht, Dosishöhe oder Geschlecht), zeigen jedoch deutlich, dass eine Wirkdauer von 13 oder 14 Stunden, wie sie vom Hersteller angegeben wird, bei Erwachsenen in der Praxis allenfalls ausnahmsweise erreicht wird.
Eine detailliertere Umfrage zur Einzeldosiswirkdauer aller ADHS-Medikamente, die auch die genannten Nebenfaktoren einbezieht, läuft seit März 2023 und könnte im Herbst 2023 erste Ergebnisse zeigen.

Etliche Betroffene (wir kennen aus dem Forum zig Fälle) nehmen 2 oder 3 Elvanse-Einzeldosen am Tag, um die benötigte Ganztagesabdeckung zu erreichen, auch wenn dies nicht den Herstellervorgaben entspricht. Die individuell verkürzte Wirkzeit könnte auch Folge einer niedrigen Dosierung von oft 30 mg und weniger je Einzeldosis sein, die gewählt wurde, wenn bei einer höheren Einzeldosis in der Phase des hohen D-AMP-Blutplasmaspiegels eine Überdosierung wahrgenommen wurde. Bei fast keinem Betroffenen überschreitet die Summe der Einzeldosen 70 mg / Tag.
Das Ergebnis einer Mehrfacheinnahme kleinerer Elvanse-Dosen auf den D-AMP-Blutplasmaspiegel könnte (rein hypothetisch) so aussehen:

10. Anwendungsbereiche von Amphetaminmedikamenten im Verhältnis zu MPH

Amphetaminmedikamente sind nach dem aktuellen europäischen Konsensus zur Diagnose und Behandlung von ADHS bei Erwachsenen das ADHS-Mittel erster Wahl bei Erwachsenen (vor Methylphenidat), und bei Kindern das Mittel zweiter Wahl (nach Methylphenidat)34
Bei Kindern, die MPH-Nonresponder sind, die also auf MPH nicht ansprechen, ist die Wirksamkeit von Amphetaminmedikamenten zu testen.
Betroffene mit ausgeprägter Dysphorie bei Inaktivität oder mit komorbider Depression profitieren von Amphetaminmedikamenten besonders.
Daneben können Betroffene, die eine stärkere Aktivierung benötigen, mit Amphetaminmedikamenten möglicherweise besser zurechtkommen.
Hochbegabte sollen auf Amphetaminmedikamente besser ansprechen als auf MPH.104

11. Nebenwirkungen

11.1. Keine Leberschäden bei üblicher Medikamentendosierung

Hohe Dosen von Amphetaminen können mit Leberschäden und bestimmten Formen klinisch offensichtlicher Leberschäden verbunden sein. Dies wird am häufigsten bei Methylendioxymetamphetamin (MDMA: „Ecstasy“) berichtet.109

Amphetamin-Medikamente werden dagegen so niedrig dosiert, dass dies nicht eintritt: die Dosis macht das Gift. Siehe hierzu auch unter Amphetamin-Medikamente versus Amphetamin als Droge.

11.2. AMP erhöht Histamin

AMP erhöht Histamin,110111 wie alle anderen bekannten ADHS-Medikamente auch:

  • Atomoxetin
  • Methylphenidat
  • Modafinil
  • Nikotin
  • Koffein

Daher haben Menschen mit Histaminintoleranz häufig Probleme durch Einnahme von ADHS-Medikamenten.
Eine ADHS-Betroffene mit Histaminintoleranz berichtete, dass sie AMP und retardiertes MPH gar nicht vertrug, unretardiertes MPH in geringen Dosen jedoch tolerieren konnte.

11.3. Keine erhöhten kardiovaskuläre Risiken

Mehrere große Studien fanden für Amphetaminmedikamente keinerlei erhöhte Risiken schwerwiegender kardiovaskulärer Vorfälle wie Schlaganfall, Herzinfarkt oder Herzrhythmusstörungen.112113

11.4. Sonstiges

Es wurden Einzelfälle von Trichotillomanie (Haare ausreißen) berichtet.114 Trichotillomanie ist eine spezifische Form einer Impulskontrollstörung.

Die Droge MDMA kann (anders als Amphetamin-Medikamente) Nervenzellen schädigen und die Blut-Hirn-Schranke angreifen.115

Zwei männliche Betroffene berichteten uns von einer Sensitivitätseinbuße im Genitalbereich nach dem Konsum von Rotwein außerhalb der Wirkzeit des regelmäßig eingenommenen Elvanse. Bei einem der Betroffenen ist geringer Nikotinkonsum außerhalb der Wirkzeit ein weiteres Verdachtsmoment.
Die Fachliteratur oder Studien berichten keine sexuellen Beeinträchtigungen durch Amphetaminmedikamente. Eine Pilotstudie an Männern mit sexuellen Problemen berichtet von Verbesserungen des subjektiven sexuellen Erlebens (verringerte Dauer bis zum Orgasmus oder eine erhöhte Orgasmushäufigkeit) durch 5 bis 20 mg Amphetaminsalze (Adderall) 1 bis 4 Stunden vor der sexuellen Aktivität (bis 10 Gaben / Monat).116 In 5 Einzelfällen wurde die Behebung einer durch SSRI hervorgerufenen sexuellen Dysfunktion durch geringe Gaben von Dextroamphetamin oder Methylphenidat berichtet.117 Weitere Casestudys berichten von multiplen Erektionen (15-jähriger), hypersexuellem Verhalten (8-jähriger) durch OROS-MPH (Concerta)118 und Priapismus (14-jähriger).119

Häufige Nebenwirkungen von Amphetamin-Mischsalzen sind:26

  • Appetitlosigkeit
  • Stimmungsschwankungen

Seltene schwerwiegende Nebenwirkungen von Amphetamin-Mischsalzen sind:26

  • psychotische Symptome
  • Krampfanfälle
  • Missbrauchsgefahr

11.5. Überdosierung

Symptome einer (starken) Überdosierung von Amphetaminen (im Sinne einer Vergiftung) sind unter anderem:

  • Agitation120
  • Hyperaktivität121
  • Bewegungsstörungen120
  • Tremor120
  • Hyperthermie121
  • Tachykardie (Herzrasen)121
  • Tachypnoe (erhöhte Atemfrequenz)121
  • Mydriasis (Pupillenvergrößerung)121120
  • Zittern121
  • Krampfanfälle121, im Extremfall bis zu epileptischen Formen120
  • Hyperreflexie (überhöhte Reflexantwort)120
  • kämpferisches Verhalten120
  • Verwirrung120
  • Halluzinationen120
  • Delirium120
  • Angst120
  • Paranoia120

12. Abbau von Amphetamin

12.1. Abbau von LDX

Lisdexamfetamin (Elvanse) wird im Blut-Zytosol der Erythrozyten durch eine unbekannte Aminosäure (vermutlich eine Aminopeptidase)122 zu d-AMP umgewandelt. Erst d-AMP ist pharmakologisch wirksam.

LDX wird zu 96 % über den Urin ausgeschieden, davon22

  • 42 % der Dosis als AMP
  • 25 % als Hippursäure
  • 2 % als intaktes LDX.

LDX ist im Gegensatz zu AMP wenig empfindlich gegenüber Urin-pH-Wert-Veränderungen.
Die Halbwertzeit von LDX beträgt typischerweise weniger als 1 Stunde.

12.2. Abbau von D-AMP und L-AMP

D-AMP wird schneller metabolisiert als l-AMP, sodass die Exposition von d-AMP 9-11 Stunden und von l-Amp 11-14 Stunden andauert.
Eine Einnahme zusammen mit einer fettreichen Mahlzeit kann die Halbwertszeit von d-AMP um eine Stunde verlängern.

AMP wird auf zwei Wegen abgebaut:22

  • Hydroxylierung durch CYP2D6 zu:123
    • 4-Hydroxyamphetamin
    • Noradrenalin (Alphahydroxyamphetamin, Norepinephrin)
    • beide unterliegen einem weiteren Metabolismus
  • oxidative Desaminierung

AMP wird primär über die Nieren ausgeschieden.
Da AMP leicht basisch ist (pKA = 9,9), hängt die AMP-Ausscheidung stark vom pH-Wert des Urins und der Durchflussrate ab, wobei die Rückgewinnung von AMP im Urin zwischen 1 % und 75 % liegt und der Rest hepatisch metabolisiert wird:22

  • normale Urin-pH-Werte
    • 30 bis 40 % der AMP-Dosis werden weitgehend als unveränderte Ausgangsverbindung ausgeschieden
    • 50 % der Dosis werden als Alpha-Hydroxyamphetamin oder sein nachgeschalteter inaktiver Metabolit, die Hippursäure, ausgeschieden.
  • saurer Urin (pH <6,0)
    • beschleunigte AMP-Ausscheidung
  • alkalischer Urin (pH >7,5)
    • verzögerte AMP-Ausscheidung

Die Halbwertszeit von AMP soll sich je Einheit des pH-Anstiegs um 7 Stunden erhöhen. Säurebildende oder alkalisierende Mittel können daher die AMP-Wirkung erheblich verändern.

12.3. Wirkdauer von AMP; Einfluss von CYP2P6-Stoffwechsel-Typen

Die Ergebnisse einer Studie deuten darauf hin, dass CYP2D6 möglicherweise kaum am Abbau von AMP beteiligt ist.124

Das CYP2D6-Gen ist stark polymorph. In Mitteleuropa relevant sind insbesondere die Allele125

  • CYP2D6*3
  • CYP2D6*4
  • CYP2D6*5
  • CYP2D6*6
  • CYP2D6*9
  • CYP2D6*41

Schlechte Metabolisierer dürften niedrigere AMP-Dosen benötigen und ultraschnelle Metabolisierer dürften höhere AMP-Dosen benötigen. Die Auswirkungen von CYP2D6-Polymorphismen auf den AMP-Stoffwechsel sind jedoch noch ungeklärt.22

Ausgehend von der Erfahrung mit dem Einfluss von CYP2D6 auf die Wirkung anderer Medikamenten (CYP2D6 ist für die Metabolisierung von 20 - 30 % aller Medikamente verantwortlich), führen die verschiedenen CYP2D6-Gen-Varianten zu verschiedenen Metabolisierungs-Typen:125

  • Langsamverstoffwechsler - ca. 7 %
    • besonders langsame Eindosierung wichtig
    • besonderes geringe Dosierung hilfreich
  • mäßig schnelle Verstoffwechsler - ca. 40 %
  • Schnellverstoffwechsler - ca 46 %
  • Ultraschnellverstoffwechsler - ca. 7 %
    • CYP2D6*XN-Allel
    • erhöhte Enzymaktivität
    • ist mit Therapie-Resistenzen assoziiert (Non-Responder)
    • erhöhte Dosis kann hilfreich sein

Mehr hierzu unter –> CYP2D6 Metabolisierungsenzym

Zwei Online-Umfragen unter zusammen rund 550 ADHS-Betroffenen, die Elvanse einnehmen, zeigte, dass rund 40 % eine Wirkdauer von 5 Stunden und weniger und zwei Drittel eine Einzeldosis-Wirkdauer von 7 Stunden und weniger haben. Mehr hierzu unter Wirkung und Wirkdauer von ADHS-Medikamenten

13. Kontraindikationen und Wechselwirkungen

Wie bei jedem hier beschriebenen Medikament gibt es auch bei Amphetamin-Medikamenten Kontraindikationen.
Vor einer Einnahme ohne vorherige ärztliche Konsultation ist zu warnen.

Für Lisdexamfetamin:126

  • Schwangerschaft / Stillzeit
    • Eine Studie fand kein verringertes Gewicht der Neugeborenen von Müttern mit ADHS, die während der Schwangerschaft Amphetaminmedikamente einnahmen.127 Dies deckt ich mit Ergebnissen von einer großen Kohortenstudie bei MPH-Einnahme in der Schwangerschaft.128
      Eine weitere Studie umfassende Studie fand eine leichte Verringerung des Geburtsgewichts sowie eine leichte Erhöhung der Risiken von Präeklampsie, Plazentaunterbrechung oder Frühgeburt bei Stimulantieneinnahme (AMP oder MPH) in der Schwangerschaft, die allerdings so gering war, dass die Autoren keine Absetzung der Stimulantieneinnahme in der Schwangerschaft empfahlen.129 Atomoxetin zeigte diese leichten Risikoerhöhungen nicht.
      Eine andere dänische Kohortenstudie fand ein verdoppeltes Risiko von Fehlgeburten bei der Einnahme von Stimulanzien während der Schwangerschaft.130
      Eine weitere dänische Kohortenstudie fand eine Zunahme von Missbildungen bei Kindern von Müttern, die im ersten Schwangerschaftstrimester MPH eingenommen hatten, die die Autoren jedoch als nicht relevant bezeichneten.131 Eine kleinere Studie fand kein erhöhtes Risiko.132
  • Überempfindlichkeit gegen den Wirkstoff
  • Monoaminoxidasehemmer (MAO-Hemmer) gleichzeitig oder 14 Tage vor Einnahme
    • Risiko: hypertensive Krise
  • Hyperthyreose / Thyreotoxikose
  • Erregungszustände
  • symptomatische Herz-Kreislauf-Erkrankung
  • fortgeschrittene Arteriosklerose
  • mittelschwere bis schwere Hypertonie
  • Glaukom
  • Serotoninwiederaufnahmehemmer
    • bei gleichzeitiger Gabe von SSRI und Amphetaminmedikamenten sollte das Risiko eines Serotoninsyndroms beachtet werden.17

Nach einer sehr großen Studie ist das Risiko, eine Psychose zu entwickeln, für ADHS-Betroffene, die MPH einnehmen, mit 0,10 % geringer als das derjenigen, die mit Amphetaminmedikamenten behandelt werden (0,21 %).133 Während mit Stimulanzien behandelte ADHS-Betroffene 2,4 Psychosefälle je 1000 Personenjahre haben, sind es über die Gesamtbevölkerung 0,214 %.134 Die Studien lassen keine Aussage darüber zu, ob die erhöhte Psychoseprävalenz auf ADHS oder Stimulanzien zurückzuführen ist.

13.1. Verkürzte Halbwertszeit (verringerte Wirkung)

  • bei Ansäuerung des Urins (verringerter phWert)126
    z.B. durch
    • Ascorbinsäure
    • Thiaziddiuretika
    • proteinreiche Ernährung
    • Diabetes mellitus

Wirkabschwächung von Dexamfetamin durch:135

  • Adrenorezeptorblocker (Betablocker)
    • z.B.:
      • Propranolol
  • Lithium
  • Phenothiazine
  • Haloperidol
  • Stoffe, die pH-Wert im Gastrointestinaltrakt senken
    • z.B:
      • Guanethidin
      • Reserpin
      • Glutaminsäure
      • Salzsäure
      • Ascorbinsäure
      • Fruchtsaft
    • bewirken verminderte Aufnahme von Dexamfetamin
  • Stoffe, die Urin ansäuern (Ammoniumchlorid, Natriumdihydrogenphopsphat etc)
    • erhöhen ionisierte Ausscheidungsprodukte von Dexamfetamin im Urin, worauf die renale Ausscheidung steigt

13.2. Verlängerte Halbwertszeit (erhöhte Wirkung)

  • bei alkalisiertem Urin (erhöhter phWert)126
    z.B. durch
    • Natriumhydrogencarbonat (Backpulver, Soda)
    • Ernährung mit hohem Obst- / Gemüseanteil
    • Harnwegsinfektionen
    • Erbrechen
    • Clonidin135

Verstärkte Wirkung von Dexamfetamin durch:135

  • Disulfiram
  • Stoffe, die pH-Wert im Gastrointestinaltrakt erhöhen, steigern Dexamfetamin-Aufnahme
    • z.B:
      • Natriumbicarbonat (Backpulver)
  • Stoffe, die pH-Wert des Urins erhöhen, steigern nicht ionisierten Ausscheidungsprodukte im Urin, was renale Ausscheidung verringert und so Blutspiegel von Dexamfetamin erhöht
    • z.B:
      • Acetazolamid
      • einige Thiazide

Es gibt Hinweise, dass eine verringerte Expression des CACNA1C-Gens zu einer verlängerten Wirkung von Dopaminwiederaufnahmehemmern führen kann.136 Umgekehrt dürfte eine erhöhte CACNA1C-Expression zu einer verkürzten Wirkung führen.

13.3. Verzögerte Wirkung

Lisdexamfetamin (Elvanse) hat bei fettreichen Mahlzeiten einen um eine Stunde verzögerten maximalen Blutspiegel (4,7 Stunden anstatt 3,8 Stunden nach Einnahme).137 Andere Parameter, wie z.B. die Wirkungsdauer, ändern sich jedoch nicht.

13.4. Verstärkende Wirkung auf Amphetamine

13.4.1. Alkohol erhöht Amphetaminspiegel

Alkohol kann den Amphetaminspiegel erhöhen.138

13.4.2. CYP2D6-Inhibitoren erhöhen Amphetaminspiegel

Da Amphetamin durch CYP2D6 abgebaut wird, können Medikamente, die ebenfalls durch CYP2D6 abgebaut werden, den Abbau von Amphetamin sowie den eigenen Abbau verlangsamen, da eine Konkurrenz um die CYP2D6-Enzym entsteht.
CYP2D6-Inhibitoren können den Amphetaminspiegel erhöhen, sodass eine Dosisverringerung erforderlich wird. Nach dem Absetzen von CYP2D6-Inhibitoren kann eine Dosiserhöhung von Amphetaminmedikamenten erforderlich sein.138
CYP2D6-Induktoren können den Abbau beschleunigen und damit die Wirkung verringern.

Siehe hierzu unter CYP2D6 Metabolisierungsenzym

13.5. Abschwächende Wirkung auf Amphetamine

Eine abschwächende Wirkung auf Amphetamin haben:139

  • Chlorpromazin
  • Haloperidol
  • Lithiumcarbonat

Eine einzelne Betroffene berichtete uns über einen Wirkungsverlust von Elvanse durch Dienogest 2 mg (Zafrilla) bei Endometriose, während die Wirkung von Attentin unverändert blieb.

13.6. Wenig Wechselwirkungen von AMP auf andere Medikamente

Im Gegensatz zu den genannten Wechselwirkungen auf Amphetaminmedikamente durch andere Medikamente sind kaum Wechselwirkungen von Amphetaminmedikamenten auf andere Medikamente bekannt.138

Amphetamin soll geringfügig hemmend wirken auf die Cytochrome

  • CYP2D6
  • CYP1A2
  • CYP3A4.

Die klinische Relevanz werde als gering eingestuft.139

Abschwächende Wirkung auf139

  • Antihypertensiva wie z.B. Guanethidin

Verstärkend auf139

  • analgetische Wirkung von Opioiden

14. Langzeitwirkung: Keine Gewöhnungseffekte von Amphetaminmedikamenten

Eine Metaanalyse von 87 randomisierten placebokontrollierten doppelblinden Studien fand keine Hinweise auf ein Nachlassen der Wirkung von Methylphenidat, Amphetaminmedikamenten, Atomoxetin oder α2-Antagonisten bei längerer Einnahme.140

15. Auslandsmitnahme von Amphetaminmedikamenten

Siehe hierzu unter Auslandsmitnahme von Stimulanzien

16. Amphetamin-Medikamente versus Amphetamin als Droge

Amphetamine werden auch als Drogen illegal gehandelt und konsumiert (z.B. als Ecstasy, Chrystal Meth).
Wie bei jedem Mittel entscheidet die Menge und die Art der Anwendung, ob es hilfreich oder schädlich ist. Bei Amphetaminen entsteht die Rauschwirkung durch

  • massiv höhere Dosierung denn als Medikament

    • erst eine hohe Dosierung besetzt mit mehr als 50 % der Dopaminrezeptoren genug DAT um eine Drogenwahrnehmung zu bewirken141
    • erst die hohe Dosierung führt zur Dopaminausschüttung über die VMAT2-Rezeptoren.
      Diesen Wirkungsweg nutzen AMP-Medikamente nicht, die rein wiederaufnahmehemmend wirken
  • schneller Wirkstoffaufnahme (z.B. durch die Nase)141

    • selbst eine hohe Dosierung, die langsam erfolgt, wirkt nicht wie eine Droge
  • kurze Wirkdauer (entscheidend ist eine hohe Geschwindigkeit der Veränderung des Dopaminspiegels nach oben und nach unten)141

Amphetamin-Medikamente sind niedrig dosiert, wirken (insbesondere als Lisdexamfetamin als Prodrug) langfristig gleichmäßig und werden zudem oral verabreicht, was eine so langsame Wirkstoffverteilung bewirkt, dass keinerlei Rauschwirkung entstehen kann. Bei Einnahme gemäß ärztlicher Verschreibung sind keinerlei Suchtwirkungen bekannt, was man von vielen anderen ärztlich verschriebenen Medikamenten bedauerlicherweise nicht sagen kann. Im Gegenteil verringern Stimulanzien als ADHS-Medikamente das Suchtrisiko signifikant und nachhaltig. Ein Case-Report berichtet beispielhaft.142
Amphetaminmedikamente sind heute als Pro-Drug erhältlich (Lisdexamfetamin). Dies bedeutet, dass sie in einer Form vorliegen, in der sie bei missbräuchlicher Verwendung (missbräuchliche Einnahme in massiver Überdosierung durch die Nase oder intravenös) schlicht unwirksam sind, weil sie in einer Wirkstoffverbindung vorliegen, erst während im Blut über viele Stunden, ganz langsam, zum Medikamentenwirkstoff verstoffwechselt werden und daher kein Drogen-High auslösen können, sondern nur die heilsame Wirkung eines flach an- und absteigenden funktionalen Dopaminspiegels bewerkstelligen können.
Daberkow et al44 zeigen in dieser Grafik unter D den langsamen Dopamin-Anstieg (Medikament) bei 1 mg/kg AMP und den schnellen Anstieg (Droge) bei 10 mg/kg AMP. Die Spiegelentwicklung bei 1 mg/kg AMP entspricht den Kurven, wie sie auch von Amphetaminmedikamenten bekannt ist.

Unretardiertes MPH, hintereinander eingenommen, wie auch retardiertes MPH, setzt mehrere Dopaminmaxima (die alle so niedrig sind, dass sie keine Drogenwirkung entwickeln). Lisdexamfetamin setzt dagegen lediglich ein Maximum und bewirkt dadurch eine gleichmäßigere Dopamin-(und Noradrenalin-)Wiederaufnahmehemmung.
Um mit unretardiertem MPH eine möglichst gleichmäßige DA- und NE-Spiegelerhöhung zu bewirken, sollte dieses unterhalb der eigentlich optimalen Einmaldosis in verkürzten Abständen (2 bis 2,5 Stunden) verabreicht werden. Anstatt also (beispielsweise) alle 3,5 Stunden 7,5 mg zu verabreichen, würde eine Gabe von 5 mg alle 2,5 Stunden eine gleichmäßigeren DA- und NE-Spiegel und damit eine bessere Symptomreduktion bewirken. Den Unterschied zwischen kurzfristiger hoher/schnell absinkender Stimulanzienmenge (= phasisches DA) und niedriger langfristige gleichbleibender Stimulanzienmenge (= tonisches DA) als entscheidenden Unterschied zwischen Drogenwirkung und heilsamer Medikamentenwirkung veranschaulicht Stahl.143

ADHS-Betroffene mit komorbider Kokainsucht zeigten bei Behandlung mit Stimulanzien eine erhebliche Verringerung des Suchtverhaltens, entsprechend dem Rückgang der ADHS-Symptome.144
Eine andere Untersuchung berichtet, dass Faktoren wie Beginn und Unterbrechungen einer Medikamenteneinnahme bei ADHS Einfluss auf die Wahrscheinlichkeit einer späteren Sucht haben könnten.27 Dabei ist allerdings zu beachten, dass Sucht in den USA Epidemische Ausmaße hat (jeder 13. US-Amerikaner hat eine Suchtdiagnose), was insbesondere auf unpassende Schmerzmittelverschreibungen (Opioide) zurückzuführen ist, wie sie in Europa nicht erfolgt. Inwieweit die Untersuchung auf Verhältnisse außerhalb der USA und insbesondere in Europa übertragbar sein könnte, ist unklar.

Eine Metaanalyse über 6 Studien mit n = 1.014 Probanden ergab für die mit Stimulanzien (hier: MPH) medikamentierten Teilnehmer ein signifikant verringertes Risiko einer späteren Sucht.145 Das Risiko einer späteren Sucht, sei es durch Alkohol oder andere Substanzen, ist danach um das 1,9-fache geringer (also nahezu halbiert).146


  1. Edel, Vollmoeller (2006): Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung bei Erwachsenen, Springer, Seite 57, Stand 2006

  2. so noch Edel, Vollmoeller (2006): Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung bei Erwachsenen, Springer, Seite 57

  3. Kooij, Bijlenga, Salerno, Jaeschke, Bitter, Balázs, Thome, Dom, Kasper, Filipe, Stes, Mohr, Leppämäki, Brugué, Bobes, Mccarthy, Richarte, Philipsen, Pehlivanidis, Niemela, Styr, Semerci, Bolea-Alamanac, Edvinsson, Baeyens, Wynchank, Sobanski, Philipsen, McNicholas, Caci, Mihailescu, Manor, Dobrescu, Krause, Fayyad, Ramos-Quiroga, Foeken, Rad, Adamou, Ohlmeier, Fitzgerald, Gill, Lensing, Mukaddes, Brudkiewicz, Gustafsson, Tania, Oswald, Carpentier, De Rossi, Delorme, Simoska, Pallanti, Young, Bejerot, Lehtonen, Kustow, Müller-Sedgwick, Hirvikoski, Pironti, Ginsberg, Félegeházy, Garcia-Portilla, Asherson (2018): Updated European Consensus Statement on diagnosis and treatment of adult ADHD, European Psychiatrie, European Psychiatry 56 (2019) 14–34, http://dx.doi.org/10.1016/j.eurpsy.2018.11.001, Seite 22, 7.4.1.

  4. Cortese, Adamo, Del Giovane, Mohr-Jensen, Hayes, Carucci, Atkinson, Tessari, Banaschewski, Coghill, Hollis, Simonoff, Zuddas, Barbui, Purgato, Steinhausen, Shokraneh, Xia, Cipriani (2018): Comparative efficacy and tolerability of medications for attention-deficit hyperactivity disorder in children, adolescents, and adults: a systematic review and network meta-analysis. Lancet Psychiatry. 2018 Sep;5(9):727-738. doi: 10.1016/S2215-0366(18)30269-4.

  5. https://www.awmf.org/uploads/tx_szleitlinien/028-045k_S3_ADHS_2018-06.pdf, S 40/81

  6. Banaschewski T (Leitlinienkoordinator), Hohmann, Millenet et al (2018): Langfassung der interdisziplinären evidenz- und konsensbasierten (S3) Leitlinie „Aufmerksamkeitsdefizit- / Hyperaktivitätsstörung (ADHS) im Kindes-, Jugend- und Erwachsenenalter“ AWMF-Registernummer 028-045, S. 72/198

  7. Lisdexamfetamin – jetzt auch für Erwachsene zugelassen – Kompendium psychiatrische Pharmakotherapie, Springer.

  8. Frölich, Banaschewski, Spanagel, Döpfner, Lehmkuhl (2012): Die medikamentöse Behandlung der Aufmerksamkeitsdefizit-Hyperaktivitätsstörung im Kindes- und Jugendalter mit Amphetaminpräparaten; Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie (2012), 40, pp. 287-300. https://doi.org/10.1024/1422-4917/a000185

  9. Arnold: Journal of Attention Disorders Vol. 3(4):200-211 (2000) Methylphenidate vs. amphetamine: Comparative review, n = 174

  10. Krause, Krause (2014): ADHS im Erwachsenenalter, Schattauer. Fallbeispiel S. 155

  11. Madhoo, Keefe, Roth, Sambunaris, Wu, Trivedi, Anderson, Lasser (2014): Lisdexamfetamine dimesylate augmentation in adults with persistent executive dysfunction after partial or full remission of major depressive disorder; Neuropsychopharmacology. 2014 May;39(6):1388-98. doi: 10.1038/npp.2013.334. n=143 Erwachsene

  12. Castells X1, Ramos-Quiroga JA, Bosch R, Nogueira M, Casas (2011): Amphetamines for Attention Deficit Hyperactivity Disorder (ADHD) in adults; Cochrane Database Syst Rev. 2011 Jun 15;(6):CD007813. doi: 10.1002/14651858.CD007813.pub2. n = 1071

  13. Childress, Komolova, Sallee (2019): An update on the pharmacokinetic considerations in the treatment of ADHD with long-acting methylphenidate and amphetamine formulations. Expert Opin Drug Metab Toxicol. 2019 Nov;15(11):937-974. doi: 10.1080/17425255.2019.1675636. PMID: 31581854. REVIEW

  14. Edel, Vollmoeller (2006): Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung bei Erwachsenen, Springer, Seite 57

  15. Stahl (2013): Stahl’s Essential Psychopharmacology, 4. Auflage, Chapter 12: Attention deficit hyperactivity disorder and its treatment, Seite 491

  16. Castellanos, Tannock (2002): Neuroscience of attention-deficit/hyperactivity disorder: The search for endophenotypes; Article in Nature reviews Neuroscience 3(8):617-28 · September 2002; DOI: 10.1038/nrn896, Seite 621

  17. Davis, Hernandez, Stock (2020): Adolescent Polypharmacy and Serotonin Syndrome. Clin Neuropharmacol. 2020 Jan/Feb;43(1):28-30. doi: 10.1097/WNF.0000000000000375. PMID: 31934921.

  18. Prox-Vagedes, Ohlmeier in Ohlmeier, Roy (Hrsg.) (2012): ADHS bei Erwachsenen – Ein Leben in Extremen, Kapitel 5: Die Suche nach dem Rausch: Substanzabhängigkeit bei ADHS Seite 101, mwNw

  19. Sharman J, Pennick M (2023): Lisdexamfetamine prodrug activation by peptidase-mediated hydrolysis in the cytosol of red blood cells. Neuropsychiatr Dis Treat. 2014 Nov 28;10:2275-80. doi: 10.2147/NDT.S70382. PMID: 25489246; PMCID: PMC4257105.

  20. https://www.adhspedia.de/wiki/Umrechnungstabelle_Medikamente

  21. Pharmazeutische Zeitung: Lisdexamfetamin|Elvanse®|71|2013

  22. Childress, Komolova, Sallee (2019): An update on the pharmacokinetic considerations in the treatment of ADHD with long-acting methylphenidate and amphetamine formulations. Expert Opin Drug Metab Toxicol. 2019 Nov;15(11):937-974. doi: 10.1080/17425255.2019.1675636. PMID: 31581854.

  23. Medikamio.com: Elvanse Abruf 09.07.2023

  24. Easton N, Steward C, Marshall F, Fone K, Marsden C (2007): Effects of amphetamine isomers, methylphenidate and atomoxetine on synaptosomal and synaptic vesicle accumulation and release of dopamine and noradrenaline in vitro in the rat brain. Neuropharmacology. 2007 Feb;52(2):405-14. doi: 10.1016/j.neuropharm.2006.07.035. PMID: 17020775.

  25. Huberman (2023): Adderall, Stimulants & Modafinil for ADHD: Short- & Long-Term Effects | Huberman Lab Podcast, english

  26. Buoli, Serati, Cahn (2016): Alternative pharmacological strategies for adult ADHD treatment: a systematic review. Expert Rev Neurother. 2016;16(2):131-44. doi: 10.1586/14737175.2016.1135735. PMID: 26693882. REVIEW

  27. Fouladvand, Hankosky, Bush, Chen, Dwoskin, Freeman, Henderson, Kantak, Talbert, Tao, Zhang (2019): Predicting substance use disorder using long-term attention deficit hyperactivity disorder medication records in Truven. Health Informatics J. 2019 May 19:1460458219844075. doi: 10.1177/1460458219844075.

  28. Heal, Cheetham, Smith (2009): The neuropharmacology of ADHD drugs in vivo: insights on efficacy and safety. Neuropharmacology. 2009 Dec;57(7-8):608-18. doi: 10.1016/j.neuropharm.2009.08.020.

  29. Faraone (2018): The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev. 2018 Apr;87:255-270. doi: 10.1016/j.neubiorev.2018.02.001. PMID: 29428394.

  30. Visentin R, Dalla Man C, Kovatchev B, Cobelli C (2014): The university of Virginia/Padova type 1 diabetes simulator matches the glucose traces of a clinical trial. Diabetes Technol Ther. 2014 Jul;16(7):428-34. doi: 10.1089/dia.2013.0377. PMID: 24571584; PMCID: PMC4074748.

  31. Gutiérrez-Casares JR, Quintero J, Segú-Vergés C, Rodríguez Monterde P, Pozo-Rubio T, Coma M, Montoto C (2023): In silico clinical trial evaluating lisdexamfetamine’s and methylphenidate’s mechanism of action computational models in an attention-deficit/hyperactivity disorder virtual patients’ population. Front Psychiatry. 2023 Jun 2;14:939650. doi: 10.3389/fpsyt.2023.939650. PMID: 37333910; PMCID: PMC10273406.

  32. Covey DP, Juliano SA, Garris PA (2013): Amphetamine elicits opposing actions on readily releasable and reserve pools for dopamine. PLoS One. 2013 May 3;8(5):e60763. doi: 10.1371/journal.pone.0060763. PMID: 23671560; PMCID: PMC3643976.

  33. Stahl (2013): Stahl’s Essential Psychopharmacology, 4. Auflage, Chapter 12: Attention deficit hyperactivity disorder and its treatment, Seite 490

  34. Frölich, Banaschewski, Spanagel, Döpfner, Lehmkuhl (2012): Die medikamentöse Behandlung der Aufmerksamkeitsdefizit-Hyperaktivitätsstörung im Kindes- und Jugendalter mit Amphetaminpräparaten; Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie (2012), 40, pp. 287-300. https://doi.org/10.1024/1422-4917/a000185

  35. Steinhausen, Rothenberger, Döpfner (2010): Handbuch ADHS, Seite 84, 85

  36. Castellanos, Tannock (2002): Neuroscience of attention-deficit/hyperactivity disorder: The search for endophenotypes; Article in Nature reviews Neuroscience 3(8):617-28 · September 2002; DOI: 10.1038/nrn896, Seite 621, mwNw

  37. Khoshbouei H, Sen N, Guptaroy B, Johnson L’, Lund D, Gnegy ME, Galli A, Javitch JA (2004): N-terminal phosphorylation of the dopamine transporter is required for amphetamine-induced efflux. PLoS Biol. 2004 Mar;2(3):E78. doi: 10.1371/journal.pbio.0020078. PMID: 15024426; PMCID: PMC368172.

  38. Daniels GM, Amara SG (1999):. Regulated trafficking of the human dopamine transporter. Clathrin-mediated internalization and lysosomal degradation in response to phorbol esters. J Biol Chem. 1999 Dec 10;274(50):35794-801. doi: 10.1074/jbc.274.50.35794. PMID: 10585462.

  39. Granas C, Ferrer J, Loland CJ, Javitch JA, Gether U (2003): N-terminal truncation of the dopamine transporter abolishes phorbol ester- and substance P receptor-stimulated phosphorylation without impairing transporter internalization. J Biol Chem. 2003 Feb 14;278(7):4990-5000. doi: 10.1074/jbc.M205058200. PMID: 12464618.

  40. Giambalvo CT (2003): Differential effects of amphetamine transport vs. dopamine reverse transport on particulate PKC activity in striatal synaptoneurosomes. Synapse. 2003 Aug;49(2):125-33. doi: 10.1002/syn.10223. PMID: 12740868.

  41. Foster JD, Pananusorn B, Vaughan RA (2002): Dopamine transporters are phosphorylated on N-terminal serines in rat striatum. J Biol Chem. 2002 Jul 12;277(28):25178-86. doi: 10.1074/jbc.M200294200. PMID: 11994276.

  42. Mulvihill (2019): Presynaptic regulation of dopamine release: Role of the DAT and VMAT2 transporters. Neurochem Int. 2019 Jan;122:94-105. doi: 10.1016/j.neuint.2018.11.004. PMID: 30465801.

  43. Edinoff, Akuly, Wagner, Boudreaux, Kaplan, Yusuf, Neuchat, Cornett, Boyer, Kaye, Kaye (2021): Viloxazine in the Treatment of Attention Deficit Hyperactivity Disorder. Front Psychiatry. 2021 Dec 17;12:789982. doi: 10.3389/fpsyt.2021.789982. PMID: 34975586; PMCID: PMC8718796., REVIEW

  44. Daberkow DP, Brown HD, Bunner KD, Kraniotis SA, Doellman MA, Ragozzino ME, Garris PA, Roitman MF (2013): Amphetamine paradoxically augments exocytotic dopamine release and phasic dopamine signals. J Neurosci. 2013 Jan 9;33(2):452-63. doi: 10.1523/JNEUROSCI.2136-12.2013. PMID: 23303926; PMCID: PMC3711765.

  45. Mergy MA, Gowrishankar R, Davis GL, Jessen TN, Wright J, Stanwood GD, Hahn MK, Blakely RD (2014): Genetic targeting of the amphetamine and methylphenidate-sensitive dopamine transporter: on the path to an animal model of attention-deficit hyperactivity disorder. Neurochem Int. 2014 Jul;73:56-70. doi: 10.1016/j.neuint.2013.11.009. PMID: 24332984; PMCID: PMC4177817.

  46. Saunders C, Ferrer JV, Shi L, Chen J, Merrill G, Lamb ME, Leeb-Lundberg LM, Carvelli L, Javitch JA, Galli A (2000): Amphetamine-induced loss of human dopamine transporter activity: an internalization-dependent and cocaine-sensitive mechanism. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6850-5. doi: 10.1073/pnas.110035297. PMID: 10823899; PMCID: PMC18764.

  47. Sulzer D, Rayport S (1990): Amphetamine and other psychostimulants reduce pH gradients in midbrain dopaminergic neurons and chromaffin granules: a mechanism of action. Neuron. 1990 Dec;5(6):797-808. doi: 10.1016/0896-6273(90)90339-h. PMID: 2268433.

  48. Schmitz Y, Schmauss C, Sulzer D. Altered dopamine release and uptake kinetics in mice lacking D2 receptors. J Neurosci. 2002 Sep 15;22(18):8002-9. doi: 10.1523/JNEUROSCI.22-18-08002.2002. PMID: 12223553; PMCID: PMC6758092.

  49. Mulvihill (2019): Presynaptic regulation of dopamine release: Role of the DAT and VMAT2 transporters. Neurochem Int. 2019 Jan;122:94-105. doi: 10.1016/j.neuint.2018.11.004. PMID: 30465801. REVIEW

  50. Quansah, Ruiz-Rodado, Grootveld, Zetterström (2018): Methylphenidate alters monoaminergic and metabolic pathways in the cerebellum of adolescent rats. Eur Neuropsychopharmacol. 2018 Feb 22. pii: S0924-977X(18)30043-9. doi: 10.1016/j.euroneuro.2018.02.002.

  51. Quansah, Zetterström (2019): Chronic methylphenidate preferentially alters catecholamine protein targets in the parietal cortex and ventral striatum. Neurochem Int. 2019 Jan 17;124:193-199. doi: 10.1016/j.neuint.2019.01.016.

  52. Felmer AC, Janson MT, Summers KE, Wallace LJ (2019):. Extracellular dopamine kinetic parameters consistent with amphetamine effects. Synapse. 2019 Dec;73(12):e22129. doi: 10.1002/syn.22129. PMID: 31449701.

  53. Jones SR, Gainetdinov RR, Wightman RM, Caron MG (1998): Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J Neurosci. 1998 Mar 15;18(6):1979-86. doi: 10.1523/JNEUROSCI.18-06-01979.1998. PMID: 9482784; PMCID: PMC6792915.

  54. Schmitz Y, Lee CJ, Schmauss C, Gonon F, Sulzer D (2001): Amphetamine distorts stimulation-dependent dopamine overflow: effects on D2 autoreceptors, transporters, and synaptic vesicle stores. J Neurosci. 2001 Aug 15;21(16):5916-24. doi: 10.1523/JNEUROSCI.21-16-05916.2001. PMID: 11487614; PMCID: PMC6763160.

  55. Müller, Candrian, Kropotov (2011), ADHS – Neurodiagnostik in der Praxis, Springer, Seiten 21, 86

  56. Janenaite, Vengeliene, Bespalov, Behl (2017): Potential role of tyrosine hydroxylase in the loss of psychostimulant effect of amphetamine under conditions of impaired dopamine transporter activity. Behav Brain Res. 2017 Sep 15;334:105-108. doi: 10.1016/j.bbr.2017.07.028. PMID: 28750831.

  57. Rebec GV, Zimmerman KS (1980): Opposite effects of D-amphetamine on spontaneous neuronal activity in the neostriatum and nucleus accumbens. Brain Res. 1980 Nov 17;201(2):485-91. doi: 10.1016/0006-8993(80)91058-6. PMID: 7191347.

  58. Hansen EL, McKenzie GM (1979): Dexamphetamine increases striatal neuronal firing in freely moving rats. Neuropharmacology. 1979 Jun;18(6):547-52. doi: 10.1016/0028-3908(79)90099-6. PMID: 573376.

  59. Shi WX, Pun CL, Zhang XX, Jones MD, Bunney BS (2000): Dual effects of D-amphetamine on dopamine neurons mediated by dopamine and nondopamine receptors. J Neurosci. 2000 May 1;20(9):3504-11. doi: 10.1523/JNEUROSCI.20-09-03504.2000. PMID: 10777813; PMCID: PMC6773133.

  60. Marinelli M, McCutcheon JE (2014): Heterogeneity of dopamine neuron activity across traits and states. Neuroscience. 2014 Dec 12;282:176-97. doi: 10.1016/j.neuroscience.2014.07.034. PMID: 25084048; PMCID: PMC4312268. REVIEW

  61. Paladini CA, Fiorillo CD, Morikawa H, Williams JT (2001): Amphetamine selectively blocks inhibitory glutamate transmission in dopamine neurons. Nat Neurosci. 2001 Mar;4(3):275-81. doi: 10.1038/85124. PMID: 11224544.

  62. Mang (2018): 05. Monoamine 2: Amphetamin, Ritalin (ADHS), Cocain, Tricyclika, Videovorlesung. ca. bei Minute 14:50.

  63. Kuczenski R, Segal DS (1997): Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J Neurochem. 1997 May;68(5):2032-7. doi: 10.1046/j.1471-4159.1997.68052032.x. Erratum in: J Neurochem 1997 Sep;69(3):1332. PMID: 9109529.

  64. Lahey (Hrsg.) (2012): Advances in Clinical Child Psychology, Band 9, S. 187, mit Verweis auf [Brown, Ebert, Hunt, Rapoport (1981): Urinary 3-methoxy-4-hydroxyphenylglycol and homovanillic acid response to d-amphetamine in hyperactive children; Biological Psychiatry, Vol 16(8), Aug 1981, 779-787

  65. Shekim, Dekirmenjian, Chapel, (1979): Urinary MHPG excretion in minimal brain dysfunction and its modification by d-amphetamine; The American Journal of Psychiatry, Vol 136(5), May 1979, 667-671. http://dx.doi.org/10.1176/ajp.136.5.667

  66. Shen, Wang (1984): Urinary 3-methoxy-4-hydroxyphenylglycol sulfate excretion in seventy-three schoolchildren with minimal brain dysfunction syndrome.Biological Psychiatry [1984, 19(6):861-870]; PMID:6743722

  67. Lahey (Hrsg.) (2012): Advances in Clinical Child Psychology, Band 9, S. 187, mit Verweis u.a. auf Shekim, Dekirmenjian, Chapel, (1979): Urinary MHPG excretion in minimal brain dysfunction and its modification by d-amphetamine; The American Journal of Psychiatry, Vol 136(5), May 1979, 667-671. http://dx.doi.org/10.1176/ajp.136.5.667

  68. Paladini CA, Williams JT (2004): Noradrenergic inhibition of midbrain dopamine neurons. J Neurosci. 2004 May 12;24(19):4568-75. doi: 10.1523/JNEUROSCI.5735-03.2004. PMID: 15140928; PMCID: PMC6729397.

  69. Shi WX, Zhang XY, Pun CL, Bunney BS (2007): Clozapine blocks D-amphetamine-induced excitation of dopamine neurons in the ventral tegmental area. Neuropsychopharmacology. 2007 Sep;32(9):1922-8. doi: 10.1038/sj.npp.1301334. PMID: 17299514.

  70. Shen, Shi (2020): Amphetamine promotes cortical Up state: Role of adrenergic receptors. Addict Biol. 2020 Jan 31;e12879. doi: 10.1111/adb.12879. PMID: 32003119.

  71. Shen, Shi (2021): Amphetamine Promotes Cortical Up State in Part Via Dopamine Receptors. Front Pharmacol. 2021 Aug 19;12:728729. doi: 10.3389/fphar.2021.728729. PMID: 34489713; PMCID: PMC8417369.

  72. Mang (2018): 05. Monoamine 2: Amphetamin, Ritalin (ADHS), Cocain, Tricyclika, Videovorlesung. ca. bei Minute 14:30.

  73. Castellanos FX, Acosta MT (2011): Hacia un entendimiento de los mecanismos moleculares de los tratamientos farmacologicos del trastorno por deficit de atencion/hiperactividad [Towards an understanding of the molecular mechanisms underlying the pharmacological treatments of attention deficit hyperactivity disorder]. Rev Neurol. 2011 Mar 1;52 Suppl 1:S155-60. Spanish. PMID: 21365598. REVIEW

  74. Heinz (2000, 2013): Das dopaminerge Verstärkungssystem – Funktion, Interaktion mit anderen Neurotransmittersystemen und psychopathologische Korrelate, Seite 61

  75. Callaway, Johnson, Gold, Nichols, Geyer (1991): Amphetamine derivatives induce locomotor hyperactivity by acting as indirect serotonin agonists; Psychopharmacology (Berl). 1991;104(3):293-301

  76. Tsuchida, Kubo, Shintani, Abe, Köves, Uetsuki, Kuroda, Hashimoto, Baba (2009): Inhibitory effects of osemozotan, a serotonin 1A-receptor agonist, on methamphetamine-induced c-Fos expression in prefrontal cortical neurons. Biol Pharm Bull. 2009 Apr;32(4):728-31. doi: 10.1248/bpb.32.728. PMID: 19336914.

  77. Strajhar, Vizeli, Patt, Dolder, Kratschmar, Liechti, Odermatt (2018): Effects of lisdexamfetamine on plasma steroid concentrations compared with d-amphetamine in healthy subjects: A randomized, double-blind, placebo-controlled study. J Steroid Biochem Mol Biol. 2019 Feb;186:212-225. doi: 10.1016/j.jsbmb.2018.10.016. PMID: 30381248.

  78. Soto, Wilcox, Zhou, Kumar, Ator, Riddle, Wong, Weed (2013): Long-term exposure to oral methylphenidate or dl-amphetamine mixture in peri-adolescent rhesus monkeys: effects on physiology, behavior, and dopamine system development. Neuropsychopharmacology. 2012 Nov;37(12):2566-79. doi: 10.1038/npp.2012.119. Erratum in: Neuropsychopharmacology. 2013 May;38(6):1141. Kumar, Anil [added]. PMID: 22805599; PMCID: PMC3473325.

  79. Mattison, Plant, Lin, Chen, Chen, Twaddle, Doerge, Slikker, Patton, Hotchkiss, Callicott, Schrader, Turner, Kesner, Vitiello, Petibone, Morris (2011): Pubertal delay in male nonhuman primates (Macaca mulatta) treated with methylphenidate. Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16301-6. doi: 10.1073/pnas.1102187108. PMID: 21930929; PMCID: PMC3182701.

  80. Tsai, Chiao, Lu, Doong, Chen, Shih, Liaw, Wang, Wang (1996): Inhibition by amphetamine of testosterone secretion through a mechanism involving an increase of cyclic AMP production in rat testes. Br J Pharmacol. 1996 Jun;118(4):984-8. doi: 10.1111/j.1476-5381.1996.tb15496.x. PMID: 8799572; PMCID: PMC1909523.

  81. Tsai, Chen, Chiao, Lu, Lin, Yeh, Lo, Kau, Wang, Wang (1997): The role of cyclic AMP production, calcium channel activation and enzyme activities in the inhibition of testosterone secretion by amphetamine. Br J Pharmacol. 1997 Nov;122(5):949-55. doi: 10.1038/sj.bjp.0701463. PMID: 9384514; PMCID: PMC1565017.

  82. Matochik, Liebenauer, King, Szymanski, Cohen, Zametkin (1994): Cerebral glucose metabolism in adults with attention defi cit hyperactivity disorder after chronic stimulant treatment. Am J Psychiatry 151: 658–664; Achtung, geringes N von 37; geringe Stichprobe mit n = 18; zitiert nach Edel, Vollmoeller (2006): Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung bei Erwachsenen, Springer, Seite 10

  83. Stroemer, Kent, Hulsebosch (1998): Enhanced neocortical neural sprouting, synaptogenesis, and behavioral recovery with D-amphetamine therapy after neocortical infarction in rats; Stroke. 1998 Nov;29(11):2381-93; discussion 2393-5.

  84. Takahashi, Ohmiya, Honda, Ni (2018): The KCNH3 inhibitor ASP2905 shows potential in the treatment of attention deficit/hyperactivity disorder. PLoS One. 2018 Nov 21;13(11):e0207750. doi: 10.1371/journal.pone.0207750. eCollection 2018.

  85. Hutson, Heins, Folgering (2015): Effects of lisdexamfetamine alone and in combination with s-citalopram on acetylcholine and histamine efflux in the rat pre-frontal cortex and ventral hippocampus. J Neurochem. 2015 Aug;134(4):693-703. doi: 10.1111/jnc.13157.

  86. Madras, Miller, Fischman (2005): The dopamine transporter and attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005 Jun 1;57(11):1397-409. doi: 10.1016/j.biopsych.2004.10.011. PMID: 15950014.

  87. Nagy, Häge, Coghill, Caballero, Adey, Anderson, Sikirica, Cardo (2015): Functional outcomes from a head-to-head, randomized, double-blind trial of lisdexamfetamine dimesylate and atomoxetine in children and adolescents with attention-deficit/hyperactivity disorder and an inadequate response to methylphenidate.Eur Child Adolesc Psychiatry. 2016 Feb;25(2):141-9. doi: 10.1007/s00787-015-0718-0.

  88. Madhoo, Keefe, Roth, Sambunaris, Wu, Trivedi, Anderson, Lasser (2014): Lisdexamfetamine dimesylate augmentation in adults with persistent executive dysfunction after partial or full remission of major depressive disorder; Neuropsychopharmacology. 2014 May;39(6):1388-98. doi: 10.1038/npp.2013.334. n=143 Erwachsene

  89. Coghill, Banaschewski, Nagy, Otero, Soutullo, Yan, Caballero, Zuddas (2017): Long-Term Safety and Efficacy of Lisdexamfetamine Dimesylate in Children and Adolescents with ADHD: A Phase IV, 2-Year, Open-Label Study in Europe.CNS Drugs. 2017 Jun 30. doi: 10.1007/s40263-017-0443-y; n = 314

  90. Arnold: Journal of Attention Disorders Vol. 3(4):200-211 (2000) Methylphenidate vs. amphetamine: Comparative review n =174

  91. Müller, Candrian, Kropotov (2011), ADHS – Neurodiagnostik in der Praxis, Seite 21

  92. Diamond: Attention-deficit disorder (attention-deficit/hyperactivity disorder without hyperactivity): A neurobiologically and behaviorally distinct disorder from attention-deficit (with hyperactivity), Development and Psychopathology 17 (2005), 807–825, Seite 811

  93. Liddle, Hollis, Batty, Groom, Totman, Liotti, Scerif, Liddle (2011): Task-related default mode network modulation and inhibitory control in ADHD: effects of motivation and methylphenidate. J Child Psychol Psychiatry. 2011 Jul;52(7):761-71. doi: 10.1111/j.1469-7610.2010.02333.x.

  94. ADHS-Chaoten;Thread: Amphetamin und Methylphenidat für Depressionen

  95. Adler, Goodman, Weisler, Hamdani, Roth (2009): Effect of lisdexamfetamine dimesylate on sleep in adults with attention-deficit/hyperactivity disorder. Behav Brain Funct. 2009 Aug 3;5:34. doi: 10.1186/1744-9081-5-34. PMID: 19650932; PMCID: PMC2732626.

  96. Giblin, Strobel (2011): Effect of lisdexamfetamine dimesylate on sleep in children with ADHD. J Atten Disord. 2011 Aug;15(6):491-8. doi: 10.1177/1087054710371195. PMID: 20574056.

  97. http://www.adhs-anderswelt.de/viewtopic.php?p=659654

  98. López FA, Leroux JR (2013): Long-acting stimulants for treatment of attention-deficit/hyperactivity disorder: a focus on extended-release formulations and the prodrug lisdexamfetamine dimesylate to address continuing clinical challenges. Atten Defic Hyperact Disord. 2013 Sep;5(3):249-65. doi: 10.1007/s12402-013-0106-x. PMID: 23564273; PMCID: PMC3751218. REVIEW

  99. Mattay, Goldberg, Fera, Hariri, Tessitore, Egan, Kolachana, Callicott, Weinberger (2003): Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine; doi: 10.1073/pnas.0931309100; PNAS May 13, 2003 vol. 100 no. 10 6186-6191

  100. Childress, Newcorn, Cutler (2019): Gender Effects in the Efficacy of Racemic Amphetamine Sulfate in Children with Attention-Deficit/Hyperactivity Disorder. Adv Ther. 2019 Apr 10. doi: 10.1007/s12325-019-00942-5.

  101. Seeman P, Madras BK (1998): Anti-hyperactivity medication: methylphenidate and amphetamine. Mol Psychiatry. 1998 Sep;3(5):386-96. doi: 10.1038/sj.mp.4000421. PMID: 9774771. REVIEW

  102. Arnold (2000): L.E. Methylphenidate vs amphetamine: Comparative review, J. of Att. Disorders, 2000, Vol 3, 200ff, n = 174

  103. Müller, Candrian, Kropotov (2011), ADHS – Neurodiagnostik in der Praxis, Springer, Seite 21

  104. Castello et al. 1992, zitiert nach Arnold: Journal of Attention Disorders Vol. 3(4):200-211 (2000) Methylphenidate vs. amphetamine: Comparative review

  105. Brams, Weisler, Findling, Gasior, Hamdani, Ferreira-Cornwell, Squires: Maintenance of Efficacy of Lisdexamfetamine Dimesylate in Adults With Attention-Deficit/Hyperactivity Disorder: Randomized Withdrawal Design, J Clin Psychiatry 2012;73(7):977-983; 10.4088/JCP.11m07430

  106. http://www.ads-hyperaktivitaet.de/FAQ/Infos/Medis/medis.html#1

  107. Markowitz, Patrick (2017): The Clinical Pharmacokinetics of Amphetamines Utilized in the Treatment of Attention-Deficit/Hyperactivity Disorder. J Child Adolesc Psychopharmacol. 2017 Oct;27(8):678-689. doi: 10.1089/cap.2017.0071. PMID: 28910145. REVIEW

  108. Dolder, Strajhar, Vizeli, Hammann, Odermatt, Liechti (2017): Pharmacokinetics and Pharmacodynamics of Lisdexamfetamine Compared with D-Amphetamine in Healthy Subjects. Front Pharmacol. 2017 Sep 7;8:617. doi: 10.3389/fphar.2017.00617. PMID: 28936175; PMCID: PMC5594082. n = 24) Die Studie benennt allerdings nicht das Gewicht der Probanden, sodass keine Aussage über die Dosierung / kg Körpergewicht möglich ist. Das Gewicht ist jedoch bei der Amphetamindosierung ein relevanter Faktor.((Markowitz, Patrick (2017): The Clinical Pharmacokinetics of Amphetamines Utilized in the Treatment of Attention-Deficit/Hyperactivity Disorder. J Child Adolesc Psychopharmacol. 2017 Oct;27(8):678-689. doi: 10.1089/cap.2017.0071. PMID: 28910145. REVIEW

  109. Amphetamines. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012-2016

  110. Ito, Onodera, Yamatodani, Watanabe, Sato (1997): The effect of methamphetamine on histamine release in the rat hypothalamus. Psychiatry Clin Neurosci. 1997 Apr;51(2):79-81. doi: 10.1111/j.1440-1819.1997.tb02911.x. PMID: 9141145.

  111. Ito, Onodera, Sakurai, Sato, Watanabe (1996): The effect of methamphetamine on histamine level and histidine decarboxylase activity in the rat brain. Brain Res. 1996 Sep 23;734(1-2):98-102. PMID: 8896814.

  112. Houghton, de Vries, Loss (2019): Psychostimulants/Atomoxetine and Serious Cardiovascular Events in Children with ADHD or Autism Spectrum Disorder. CNS Drugs. 2019 Nov 25. doi: 10.1007/s40263-019-00686-4. n = 2.566.995

  113. Forns, Dudukina, Hägg, Szentkúti, Gembert, Plana, Gilsenan, Horváth-Puhó, Ehrenstein, Reutfors, Rebordosa )2022): Risk of Major Cardiovascular and Cerebrovascular Events in Users of Lisdexamfetamine and Other Medications for Attention-Deficit/Hyperactivity Disorder in Denmark and Sweden: A Population-Based Cohort Study. Neurol Ther. 2022 Aug 26. doi: 10.1007/s40120-022-00396-y. PMID: 36028603. n = 273.000

  114. Manso, Morcillo, Pereira, Maldonado (2020): Tricotilomanía de nueva aparición durante el tratamiento con fármacos estimulantes. A propósito de dos casos clínicos pediátricos [New-onset trichotillomania during treatment with stimulant drugs. About two pediatric clinical cases]. Arch Argent Pediatr. 2020 Feb;118(1):e61-e62. Spanish. doi: 10.5546/aap.2020.e61. PMID: 31984712.

  115. Mang (2018): 05. Monoamine 2: Amphetamin, Ritalin (ADHS), Cocain, Tricyclika, Videovorlesung. ca. bei Minute 38.

  116. Levine LA, Betcher HK, Ziegelmann MJ, Bajic P (2020): Amphetamine/Dextroamphetamine Salts for Delayed Orgasm and Anorgasmia in Men: A Pilot Study. Urology. 2020 Aug;142:141-145. doi: 10.1016/j.urology.2020.04.081. PMID: 32360625. n = 17

  117. Bartlik BD, Kaplan P, Kaplan HS (1995): Psychostimulants apparently reverse sexual dysfunction secondary to selective serotonin re-uptake inhibitors. J Sex Marital Ther. 1995 Winter;21(4):264-71. doi: 10.1080/00926239508414646. PMID: 8789508.

  118. Coskun M, Zoroglu S (2009): A report of two cases of sexual side effects with OROS methylphenidate. J Child Adolesc Psychopharmacol. 2009 Aug;19(4):477-9. doi: 10.1089/cap.2008.0161. PMID: 19702503.

  119. Cakin-Memik N, Yildiz O, Sişmanlar SG, Karakaya I, Ağaoğlu B (2010): Priapism associated with methylphenidate: a case report. Turk J Pediatr. 2010 Jul-Aug;52(4):430-4. PMID: 21043394.

  120. Spiller HA, Hays HL, Aleguas A Jr (2013): Overdose of drugs for attention-deficit hyperactivity disorder: clinical presentation, mechanisms of toxicity, and management. CNS Drugs. 2013 Jul;27(7):531-43. doi: 10.1007/s40263-013-0084-8. PMID: 23757186. REVIEW

  121. Fitzgerald KT, Bronstein AC (2013): Adderall® (amphetamine-dextroamphetamine) toxicity. Top Companion Anim Med. 2013 Feb;28(1):2-7. doi: 10.1053/j.tcam.2013.03.002. PMID: 23796480.

  122. Sharman J, Pennick M (2014): Lisdexamfetamine prodrug activation by peptidase-mediated hydrolysis in the cytosol of red blood cells. Neuropsychiatr Dis Treat. 2014 Nov 28;10:2275-80. doi: 10.2147/NDT.S70382. PMID: 25489246; PMCID: PMC4257105.

  123. Konstantinidis: CYP-450-Interaktionen: Die Isoenzyme CYP1A2 und CYP2D6; Österreichische Gesellschaft für Neuropsychopharmakologie und Biologische Psychiatrie; Webseitenabruf 23.12.19

  124. Law R, Lewis D, Hain D, Daut R, DelBello MP, Frazier JA, Newcorn JH, Nurmi E, Cogan ES, Wagner S, Johnson H, Lanchbury J (2022): Characterisation of seven medications approved for attention-deficit/hyperactivity disorder using in vitro models of hepatic metabolism. Xenobiotica. 2022 Nov 1:1-32. doi: 10.1080/00498254.2022.2141151. PMID: 36317558.

  125. Phamarkogenetik.de: Cytochrom P450 2D6 (CYP2D6) [T88.7] Abruf 25.03.2022

  126. Wirkstoff aktuell (2015): Lisdexamfetamin

  127. Rose, Hathcock, White, Borowski, Rivera-Chiauzzi (2020): Amphetamine-Dextroamphetamine and Pregnancy: Neonatal Outcomes After Prenatal Prescription Mixed Amphetamine Exposure. J Atten Disord. 2020 Jan 13:1087054719896857. doi: 10.1177/1087054719896857.

  128. Bro, Kjaersgaard, Parner, Sørensen, Olsen, Bech, Pedersen, Christensen, Vestergaard (2015): Adverse pregnancy outcomes after exposure to methylphenidate or atomoxetine during pregnancy. Clin Epidemiol. 2015 Jan 29;7:139-47. doi: 10.2147/CLEP.S72906. eCollection 2015.

  129. Cohen, Hernández-Díaz, Bateman, Park, Desai, Gray, Patorno, Mogun, Huybrechts (2017): Placental Complications Associated With Psychostimulant Use in Pregnancy. Obstet Gynecol. 2017 Dec;130(6):1192-1201. doi: 10.1097/AOG.0000000000002362.

  130. Haervig, Mortensen, Hansen, Strandberg-Larsen (2014): Use of ADHD medication during pregnancy from 1999 to 2010: a Danish register-based study. Pharmacoepidemiol Drug Saf. 2014 May;23(5):526-33. doi: 10.1002/pds.3600. n = 480 unter 1.054.494 Geburten

  131. Pottegård, Hallas, Andersen, Løkkegaard, Dideriksen, Aagaard, Damkier (2014): First-trimester exposure to methylphenidate: a population-based cohort study. J Clin Psychiatry. 2014 Jan;75(1):e88-93. doi: 10.4088/JCP.13m08708.

  132. Szpunar MJ, Freeman MP, Kobylski LA, Rossa ET, Gaccione P, Chitayat D, Viguera AC, Cohen LS (2023): Risk of Major Malformations in Infants After First-Trimester Exposure to Stimulants: Results From the Massachusetts General Hospital National Pregnancy Registry for Psychiatric Medications. J Clin Psychopharmacol. 2023 Jul-Aug 01;43(4):326-332. doi: 10.1097/JCP.0000000000001702. PMID: 37235505.

  133. Moran, Ongur, Hsu, Castro, Perlis, Schneeweiss (2019): Psychosis with Methylphenidate or Amphetamine in Patients with ADHD. N Engl J Med. 2019 Mar 21;380(12):1128-1138. doi: 10.1056/NEJMoa1813751. n = 221.846

  134. Jongsma, Gayer-Anderson, Lasalvia, Quattrone, Mulè, Szöke, Selten, Turner, Arango, Tarricone, Berardi, Tortelli, Llorca, de Haan, Bobes, Bernardo, Sanjuán, Santos, Arrojo, Del-Ben, Menezes, Velthorst, Murray, Rutten, Jones, van Os, Morgan, Kirkbride; for the European Network of National Schizophrenia Networks Studying Gene-Environment Interactions Work Package 2 (EU-GEI WP2) Group(2018): Treated Incidence of Psychotic Disorders in the Multinational EU-GEI Study. JAMA Psychiatry. 2018;75(1):36–46. doi:10.1001/jamapsychiatry.2017.3554; n = 12,9 Millionen Personenjahre

  135. Gelbe Liste: Dexamfetamin. Abgerufen 12.02.23

  136. Terrillion CE, Dao DT, Cachope R, Lobo MK, Puche AC, Cheer JF, Gould TD (2017): Reduced levels of Cacna1c attenuate mesolimbic dopamine system function. Genes Brain Behav. 2017 Jun;16(5):495-505. doi: 10.1111/gbb.12371. PMID: 28186690; PMCID: PMC5457318.

  137. Shire (2018): Fachinformation Elvanse

  138. Schoretsanitis, de Leon, Eap, Kane, Paulzen (2019): Clinically Significant Drug-Drug Interactions with Agents for Attention-Deficit/Hyperactivity Disorder. CNS Drugs. 2019 Dec;33(12):1201-1222. doi: 10.1007/s40263-019-00683-7.

  139. Pharmazeutische Zeitung: Lisdexamfetamin; abgerufen 10.02.21

  140. Castells, Ramon, Cunill, Olivé, Serrano (2020): Relationship Between Treatment Duration and Efficacy of Pharmacological Treatment for ADHD: A Meta-Analysis and Meta-Regression of 87 Randomized Controlled Clinical Trials. J Atten Disord. 2020 Feb 20:1087054720903372. doi: 10.1177/1087054720903372. PMID: 32075485.

  141. Stahl (2013): Stahl’s Essential Psychopharmacology. Neuroscientific Basis and Practical Applications. 4th Edition. Seite 310

  142. Levine J, Swanson H (2023): The Use of Lisdexamfetamine to Treat ADHD in a Patient with Stimulant (Methamphetamine) Use Disorder. Case Rep Psychiatry. 2023 Aug 14;2023:5574677. doi: 10.1155/2023/5574677. PMID: 37609571; PMCID: PMC10442178.

  143. Stahl (2013): Stahl’s Essential Psychopharmacology, 4. Auflage, Chapter 12: Attention deficit hyperactivity disorder and its treatment, Seite 495

  144. Manni, Cipollone, Pallucchini, Maremmani, Perugi, Maremmani (2019): Remarkable Reduction of Cocaine Use in Dual Disorder (Adult Attention Deficit Hyperactive Disorder/Cocaine Use Disorder) Patients Treated with Medications for ADHD. Int J Environ Res Public Health. 2019 Oct 15;16(20). pii: E3911. doi: 10.3390/ijerph16203911.

  145. Wilens, Faraone, Biederman, Gunawardene (2003): Does stimulant therapy of attention-deficit/hyperactivity disorder beget later substance abuse? A meta-analytic review of the literature; Pediatrics. 2003 Jan;111(1):179-85.

  146. Edel, Vollmoeller (2006): Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung bei Erwachsenen, Springer, Seite 120