Liebe Leserinnen und Leser von ADxS.org, bitte verzeihen Sie die Störung.

ADxS.org benötigt in 2022 rund 12.500 €. In 2022 erhielten wir bis zum 31.10. Spenden Dritter von 11.166 €. Leider spenden 99,7 % unserer Leser nicht. Wenn alle, die diese Bitte lesen, einen kleinen Beitrag leisten, wäre unsere Spendenkampagne für das Jahr 2022 nach einigen Tagen vorbei. Dieser Spendenaufruf wird 4.000 Mal in der Woche angezeigt, jedoch nur 19 Menschen spenden. Wenn Sie ADxS.org nützlich finden, nehmen Sie sich bitte eine Minute Zeit und unterstützen Sie ADxS.org mit Ihrer Spende. Vielen Dank!

Seit dem 01.06.2021 wird ADxS.org durch den gemeinnützigen ADxS e.V. getragen. Spenden an den ADxS e.V. sind steuerlich absetzbar (bis 100 € genügt der Überweisungsträger als Spendenquittung).

11166€ von 12500€ - Stand 14.11.2022
89%
Header Image
Neurophysiologische Korrelate von Organisations- und Exekutivfunktionsproblemen bei AD(H)S

Inhaltsverzeichnis

Neurophysiologische Korrelate von Organisations- und Exekutivfunktionsproblemen bei AD(H)S

Organisationsprobleme sind ein wesentlicher Teil der Exekutivfunktionen.
Eine Beschreibung der Exekutivfunktionen findet sich unter Organisationsschwierigkeiten / Exekutivprobleme im Beitrag Gesamtliste der AD(H)S-Symptome nach Erscheinungsformen im Kapitel Symptome.

Exekutivfunktionen werden vornehmlich durch das Arbeitsgedächtnis gesteuert.

1. Das Arbeitsgedächtnis (Working Memory)

Das Arbeitsgedächtnis besteht aus drei Gedächtniseinheiten, die von einer zentralen Instanz koordiniert werden:

  • verarbeitende Prozessoreinheit (“zentrale Exekutive”)
    • dlPFC
    • verarbeitet Informationen, die in den beiden Gedächtnisspeichern vorgehalten werden
  • visuell-räumliches Gedächtnis
    • rechter hinterer Parietallappen
  • akustisch-sprachliches (“phonologisches”) Gedächtnis
    • unterer linken Parietallappen
  • Kurzzeitgedächtnis
    • episodischer Puffer für visuell-räumliche und akustisch-sprachliche Informationen zur Verarbeitung durch die zentrale Exekutive. Speicherkapazität im Schnitt 7 (+/-2) Einheiten (Millersche Zahl)

Übertragen auf einen PC könnte man die zentrale Exekutive als den Hauptprozessor, das Kurzzeitgedächtnis als den Arbeitsspeicher (RAM) und die Gedächtnisspeicher als verschiedene Segmente der Festplatte beschreiben.

Das Arbeitsgedächtnis im dlPFC wird vornehmlich dopaminerg und noradrenerg gesteuert. Dabei scheint überwiegend phasisches und weniger tonisches Dopamin die Vorgänge des Arbeitsgedächtnisses zu steuern.1
Beispielsweise reagieren DA-Neuronen phasisch auf Reize, die gemerkt werden sollen und zeigen keine tonische Aktivität während des Retentionsintervalls, also der Zeit, während dessen die Informationen aktiv gehalten wird.2

AD(H)S ist durch 3 Pathways (nach Sonuga-Barke) gekennzeichnet, die neurophysiologisch Symptome verursachen:

  • Dopaminmangel (u.a.) im dlPFC (Arbeitsgedächtnis)
    • Desorganisiertheit
    • Vergesslichkeit
  • Dopaminmangel (u.a.) im Striatum (Verstärkungszentrum)
    • Motivationsprobleme
    • Impulsivität
    • Hyperaktivität
  • Veränderungen im Kleinhirn
    • Zeitwahrnehmungsprobleme

Während bei AD(H)S Noradrenalin wie Dopamin im PFC verringert ist, ist Noradrenalin bei PTSD im PFC erhöht, was (ab einem bestimmten Maß) den PFC deaktiviert und die Amygdala aktiviert, weshalb PTSD typischerweise mit Alpha-1- oder Beta-Adrenorezeptor-Antagonisten behandelt wird, die der Abschaltung des PFC durch zu viel Noradrenalin entgegenwirken.3

D1-Agonisten verbessern, D1-Antagonisten beeinträchtigen die Funktion des Arbeitsgedächtnisses.4 Eine übermäßige D1-Stimulation, wie bei akutem Stress, führt ebenso zu Arbeitsgedächtnisdefiziten wie eine unzureichende Stimulation.5

D2-Rezeptor-Agonisten verbessern, D2-Antagonisten beeinträchtigen das räumliche (nicht das nicht-räumliche) Arbeitsgedächtnis und dadurch die exekutiven Funktionen bei gesunden Erwachsenen.6

CRH allgemein sowie im PFC im Besonderen beeinträchtigt dosisabhängig das visuell-räumliche Arbeitsgedächtnis, das insbesondere bei AD(H)S beeinträchtigt ist.7 Unspezifische CRH-Rezeptor-Antagonisten wie selektive CRH-1-Rezeptor-Antagonisten behoben die Beeinträchtigung des Arbeitsgedächtnisses und wurden von den Autoren deshalb als mögliche Ansatzpunkte einer Behandlung bei AD(H)S in betracht gezogen.

2. Arbeitsgedächtnisprobleme bei AD(H)S

AD(H)S korreliert mit Arbeitsgedächtnisproblemen,8 anders als Tic-Störungen.9

Eine Studie berichtet, dass die verschiedenen Komponenten des Arbeitsgedächtnisses bei AD()H)S unterschiedlich häufig (und individuell sehr verschieden) beeinträchtigt sind. Rund 70 % der Betroffenen zeigten eine Beeinträchtigung in einem der 3 Bereiche:10

  • Neuordnung des Arbeitsspeichers (sehr häufig)
    • Beibehalten und Neuanordnen von Informationen
  • Aktualisierung des Arbeitsgedächtnisses (häufig)
    • aktive Überwachung eingehender Informationen und das Ersetzen veralteter Informationen durch relevante Informationen
    • 8 % der Betroffenen zeigten in diesem Bereich eine besondere Stärke
  • Duale Verarbeitung (selten)
    • Beihalten von Informationen während der Ausführung einer Nebenaufgabe
    • 20 % der Betroffenen zeigten in diesem Bereich eine besondere Stärke

Im dlPFC wird die Daueraufmerksamkeit zur Lösung von Problemen abgebildet. Die durch eine gestörte Daueraufmerksamkeit verursachten AD(H)S-Symptome korrelieren daher mit einer Störung des dlPFC.11 Selektive Aufmerksamkeit (Ablenkbarkeit) wird dagegen im dorsalen Nucleus accumbens verortet.

Eine Langzeitstudie fand, dass sich Arbeitsgedächtnisprobleme bei AD(H)S im Erwachsenenalter nicht verringern. Teilweise wurde eine Verschlechterung der Ablenkbarkeit festgestellt.12

Eine andere Studie fand überraschend, dass Spracherwerb und arithmetische mathematische Fähigkeiten, für die das Arbeitsgedächtnis benötigt wird, bei Kindern mit AD(H)S nicht wesentlich verschlechtert waren. Die Performance brach jedoch deutlich ein, wenn die Betroffenen glaubten, weniger begabt zu sein.13

Eine Untersuchung fand bei Kindern mit AD(H)S neben Exekutivproblemen auch (und abweichend zu anderen Untersuchungen) Probleme mit der Theory of Mind (ToM). Diese korrelierten jedoch nicht mit den Exekutivproblemen, sodass eine Beteiligung des Arbeitsgedächtnisses wenig wahrscheinlich erschien.14 Eine andere Studie fand bei Erwachsenen mit AD(H)S herabgesetzte Fähigkeiten der Theory of Mind, die mit Exekutivproblemen korrelierten.15

Eine Untersuchung fand bei Kindern mit AD(H)S eine Korrelation zwischen Beeinträchtigung des Arbeitsgedächtnisses und Auffälligkeiten bei der Augenbewegung beim Lesen. Das visuelle Scannen von Wörtern beim Lesen war diskontinuierlich, unkoordiniert und chaotisch. AD(H)S-Gruppen zeigten höheren Entropieindex unter den vier Kategorien von Sakkaden als Nichtbetroffene.8

Bei AD(H)S dauert es 250 ms, bis ein Fehler im Satzbau erfasst wird. Bei Nichtbetroffenen dauert es lediglich 100 ms.16

Organisationsschwierigkeiten (Desorganisiertheit) sollen weiter häufig mit Zeitwahrnehmungsproblemen zusammenhängen.17 Dies deckt sich indes nicht mit den hier beschriebenen neurophysiologischen Korrelaten von Organisationsproblemen / Exekutivproblemen (Defizite im Arbeitsgedächtnis, das im dlPFC sitzt), welche sich von den neurophysiologischen Korrelaten von Zeit(wahrnehmungs-)problemen unterscheiden, die vornehmlich im Cerebellum verortet werden.

Eine Studie fand Hinweise, dass die mit der N-Back-Aufgabe messbaren kognitiven Defizite von Patienten mit AD(H)S nicht auf einem Defizit des Arbeitsgedächtnisses, sondern auf einer Störung des kognitiven Zustands (Gedächtnisbelastung, Aufgabendauer und neue Reize) beruhen. AD(H)S-Betroffene und Kontrollen zeigten in Bezug auf Reaktionszeit und Genauigkeit keine signifikanten Unterschiede.18

  • Räumlich gesehen wiesen erwachsene AD(H)S-Patienten im linken orbitofrontalen Bereich und im linken frontopolaren Bereich (Kanäle 4 und 11) signifikant höhere Aktivierungswerte von oxyHb bei der 2-back-Aufgabe und niedrigere Aktivierungswerte von deoxyHb bei der 3-back-Aufgabe auf als gesunde Kontrollpersonen (korrigierter p < 0,05).
  • Zeitlich gesehen erreichten Erwachsene mit ADHS ihre Spitzenwerte in den ROIs früher als gesunde Kontrollpersonen.

3. Messung von Arbeitsgedächtnisproblemen

Die mit dem Arbeitsgedächtnis verbundenen Items der Problemlösungsfähigkeiten und der Daueraufmerksamkeit können mit Tests gemessen werden.

3.1. Messung von Arbeitsgedächtnisproblemen mit dem N-back-Test

Das Arbeitsgedächtnis und die Daueraufmerksamkeit können mit dem N-back-Test geprüft werden.19

Mehr hierzu unter N-back-Test im Unterabschnitt Aufmerksamkeits- und Reaktionstests im Abschnitt Tests im Beitrag AD(H)S – Diagnosemethoden im Kapitel Diagnostik.

4. Weitere Exekutivfunktionen

Inhibition (Kontrolle der Reaktionshemmung)20

  • PFC rechts inferior21
  • Basalganglien
    • Nucleus subthalamicus22

Fehlerdetektion

  • PFC medial21
  • ACC rostral und der temporoparietale Übergang23

Kontrolle der Interferenz (eine Komponente der Reaktionshemmung)

  • ACC24
  • PFC lateral24
  • Cortex parietal20

Planung und das Lösen von Problemen20

  • dlPFC23
  • ACC23
  • OFC23
  • motorische/premotorische Areale23

korrekte Ausführung von Arbeitsgedächtnisaufgaben20

  • dlPFC
  • vlPFC
  • rostraler PFC
  • parietaler Cortex (bilateral und medial-posterior)

Wortgeläufigkeit:20

  • phonemische Wortgeläufigkeit
    Anzahl der Worte mit einem bestimmten Anfangsbuchstaben, die ein Probandbilden kann:

    • frontale Regionen25
      • linke motorischen/premotorische Regionen
      • linken oder bilateralen operculäre Regionen
      • linken laterale orbitofrontale Regionen
      • rechte dorsolaterale Regionen
  • semantische / kategoriale Wortgeläufigkeit
    Anzahl der Worte, die ein Proband aus einer bestimmten semantischen Kategorie (z. B. Tiere) bilden kann, unabhängig vom Anfangsbuchstaben

    • temporale Regionen25

kognitive Flexibilität20

  • Cortex inferior parietal
  • superiorer Colliculus
  • Thalamus posterior lateral
  • mediale frontale Regionen
  • prä-supplementäres motorisches Areal

5. Cerebellumschäden als Ursache von Exekutivproblemen

Kinder mit tumurbedingten Schäden des Cerebellums zeigten signifikant häufiger Exekutivprobleme und sozial-emotionale Probleme.26


  1. Cohen, Braver, Brown (2002): Computational perspectives on dopamine function in prefrontal cortex. Curr Opin Neurobiol. 2002 Apr;12(2):223-9.

  2. Hollerman, Tremblay, Schultz (1998): Influence of Reward Expectation on Behavior-Related Neuronal Activity in Primate Striatum. Journal of Neurophysiology 1998 80:2, 947-963

  3. Levy (2009): Dopamine vs noradrenaline: inverted-U effects and ADHD theories. Aust N Z J Psychiatry. 2009 Feb;43(2):101-8. doi: 10.1080/00048670802607238.

  4. Arnsten (1997): Catecholamine regulation of the prefrontal cortex. J Psychopharmacol. 1997;11(2):151-62.

  5. Arnsten (2001): Dopaminergic and noradrenergic influences on cognitive functions mediated by prefrontal cortex. In Solanto, Arnsten, Castellanos (Herausgeber): Stimulant drugs and ADHD: Basic and clinical neuroscience (p. 185–208). Oxford University Press. Zitiert nach Solanto (2002): Dopamine dysfunction in AD/HD: integrating clinical and basic neuroscience research. Behav Brain Res. 2002 Mar 10;130(1-2):65-71.

  6. Mehta, Sahakian, Robbins (2001): Comparative psychopharmacology of methylphenidate and related drugs in human volunteers, patients with ADHD, and experimental animals. In Solanto, Arnsten, Castellanos (Herausgeber): Stimulant drugs and ADHD: Basic and clinical neuroscience (p. 303–331). Oxford University Press. Zitiert nach Solanto (2002): Dopamine dysfunction in AD/HD: integrating clinical and basic neuroscience research. Behav Brain Res. 2002 Mar 10;130(1-2):65-71.

  7. Hupalo, Berridge (2016): Working Memory Impairing Actions of Corticotropin-Releasing Factor (CRF) Neurotransmission in the Prefrontal Cortex. Neuropsychopharmacology. 2016 Oct;41(11):2733-40. doi: 10.1038/npp.2016.85. PMID: 27272767; PMCID: PMC5026742.

  8. Mohammadhasani, Caprì, Nucita, Iannizzotto, Fabio (2019): Atypical Visual Scan Path Affects Remembering in ADHD. J Int Neuropsychol Soc. 2019 Dec 12:1-10. doi: 10.1017/S135561771900136X.

  9. Openneer, Forde, Akkermans, Naaijen, Buitelaar, Hoekstra, Dietrich (2019): Executive function in children with Tourette syndrome and attention-deficit/hyperactivity disorder: Cross-disorder or unique impairments? Cortex. 2019 Dec 3;124:176-187. doi: 10.1016/j.cortex.2019.11.007.

  10. Fosco, Kofler, Groves, Chan, Raiker (2020): Which ‘Working’ Components of Working Memory aren’t Working in Youth with ADHD? J Abnorm Child Psychol. 2020 Jan 27;10.1007/s10802-020-00621-y. doi: 10.1007/s10802-020-00621-y. PMID: 31989344. n = 86

  11. Stahl (2013): Stahl’s Essential Psychopharmacology, 4. Auflage, Chapter 12: Attention deficit hyperactivity disorder and its treatment, Seite 472

  12. Torgalsbøen, Zeiner, Øie (2019): Pre-attention and Working Memory in ADHD: A 25-Year Follow-Up Study. J Atten Disord. 2019 Oct 18:1087054719879491. doi: 10.1177/1087054719879491.

  13. Turker, Seither-Preisler, Reiterer, Schneider (2019): Cognitive and Behavioural Weaknesses in Children with Reading Disorder and AD(H)D. Sci Rep. 2019 Oct 23;9(1):15185. doi: 10.1038/s41598-019-51372-w.

  14. Mohammadzadeh, Khorrami Banaraki, Tehrani Doost, Castelli (2019): A new semi-nonverbal task glance, moderate role of cognitive flexibility in ADHD children’s theory of mind. Cogn Neuropsychiatry. 2019 Oct 29:1-17. doi: 10.1080/13546805.2019.1681951.

  15. Tatar, Cansız (2020): Executive function deficits contribute to poor theory of mind abilities in adults with ADHD. Appl Neuropsychol Adult. 2020 Mar 18:1-8. doi: 10.1080/23279095.2020.1736074. PMID: 32186409. n = 80

  16. Gonzalez-Perez, Hernandez-Exposito, Perez, Ramirez, Dominguez (2018): Electrophysiological correlates of reading in children with attention deficit hyperactivity disorder. Rev Neurol. 2018 Mar 16;66(6):175-181. n = 79

  17. Krause, Krause (2014): ADHS im Erwachsenenalter, S. 62

  18. Li Y, Chen J, Zheng X, Liu J, Peng C, Liao Y, Liu Y. (2022): Cognitive deficit in adults with ADHD lies in the cognitive state disorder rather than the working memory deficit: A functional near-infrared spectroscopy study. J Psychiatr Res. 2022 Aug 1;154:332-340. doi: 10.1016/j.jpsychires.2022.07.064. PMID: 36029728. n = 46

  19. Stahl (2013): Stahl’s Essential Psychopharmacology, 4. Auflage, Chapter 12: Attention deficit hyperactivity disorder and its treatment, Seite 473

  20. Pitzianti, Spiridigliozzi, Bartolucci, Esposito, Pasini (2020): New Insights on the Effects of Methylphenidate in Attention Deficit Hyperactivity Disorder. Front Psychiatry. 2020 Sep 30;11:531092. doi: 10.3389/fpsyt.2020.531092. PMID: 33132928; PMCID: PMC7561436.

  21. Rubia, Smith, Brammer, Taylor (2003): Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage. 2003 Sep;20(1):351-8. doi: 10.1016/s1053-8119(03)00275-1. PMID: 14527595.

  22. Aron, Poldrack (2006): Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus. J Neurosci. 2006 Mar 1;26(9):2424-33. doi: 10.1523/JNEUROSCI.4682-05.2006. PMID: 16510720; PMCID: PMC6793670.

  23. Lie, Specht, Marshall, Fink (2006): Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test. Neuroimage. 2006 Apr 15;30(3):1038-49. doi: 10.1016/j.neuroimage.2005.10.031. PMID: 16414280.

  24. Peterson, Skudlarski, Gatenby, Zhang, Anderson, Gore (1999): An fMRI study of Stroop word-color interference: evidence for cingulate subregions subserving multiple distributed attentional systems. Biol Psychiatry. 1999 May 15;45(10):1237-58. doi: 10.1016/s0006-3223(99)00056-6. PMID: 10349031.

  25. Baldo, Schwartz, Wilkins, Dronkers (2006): Role of frontal versus temporal cortex in verbal fluency as revealed by voxel-based lesion symptom mapping. J Int Neuropsychol Soc. 2006 Nov;12(6):896-900. doi: 10.1017/S1355617706061078. PMID: 17064451.

  26. Starowicz-Filip A, Bętkowska-Korpała B, Yablonska T, Kwiatkowski S, Milczarek O, Klasa Ł, Chrobak AA (2022): Involvement of the cerebellum in the regulation of executive functions in children-Preliminary analysis based on a neuropsychological study of children after cerebellar tumour surgery. Front Psychol. 2022 Oct 6;13:961577. doi: 10.3389/fpsyg.2022.961577. PMID: 36275206; PMCID: PMC9583864.